gpt4 book ai didi

java - 如何在 Java 中为 TensorFlow DNNRegressor 提供输入?

转载 作者:太空狗 更新时间:2023-10-29 21:55:58 27 4
gpt4 key购买 nike

我设法使用 DNNRegressor 编写了一个 TensorFlow python 程序。我已经训练了模型,并且能够通过手动创建的输入(常量张量)从 Python 模型中获得预测。我还能够以二进制格式导出模型。

import pandas as pd
import numpy as np
import tensorflow as tf
from tensorflow.python.framework import graph_util

#######################
# Setup
#######################

# Converting Data into Tensors
def input_fn(df, training = True):
# Creates a dictionary mapping from each continuous feature column name (k) to
# the values of that column stored in a constant Tensor.
continuous_cols = {k: tf.constant(df[k].values)
for k in continuous_features}

feature_cols = dict(list(continuous_cols.items()))

if training:
# Converts the label column into a constant Tensor.
label = tf.constant(df[LABEL_COLUMN].values)

# Returns the feature columns and the label.
return feature_cols, label

# Returns the feature columns
return feature_cols

def train_input_fn():
return input_fn(train_df)

def eval_input_fn():
return input_fn(evaluate_df)

#######################
# Data Preparation
#######################
df_train_ori = pd.read_csv('training.csv')
df_test_ori = pd.read_csv('test.csv')
train_df = df_train_ori.head(10000)
evaluate_df = df_train_ori.tail(5)
test_df = df_test_ori.head(1)
MODEL_DIR = "/tmp/model"
BIN_MODEL_DIR = "/tmp/modelBinary"
features = train_df.columns
continuous_features = [feature for feature in features if 'label' not in feature]
LABEL_COLUMN = 'label'

engineered_features = []

for continuous_feature in continuous_features:
engineered_features.append(
tf.contrib.layers.real_valued_column(
column_name=continuous_feature,
dimension=1,
default_value=None,
dtype=tf.int64,
normalizer=None
))


#######################
# Define Our Model
#######################
regressor = tf.contrib.learn.DNNRegressor(
feature_columns=engineered_features,
label_dimension=1,
hidden_units=[128, 256, 512],
model_dir=MODEL_DIR
)

#######################
# Training Our Model
#######################
wrap = regressor.fit(input_fn=train_input_fn, steps=5)

#######################
# Evaluating Our Model
#######################
results = regressor.evaluate(input_fn=eval_input_fn, steps=1)
for key in sorted(results):
print("%s: %s" % (key, results[key]))

#######################
# Save binary model (to be used in Java)
#######################
tfrecord_serving_input_fn = tf.contrib.learn.build_parsing_serving_input_fn(tf.contrib.layers.create_feature_spec_for_parsing(engineered_features))
regressor.export_savedmodel(
export_dir_base=BIN_MODEL_DIR,
serving_input_fn = tfrecord_serving_input_fn,
assets_extra=None,
as_text=False,
checkpoint_path=None,
strip_default_attrs=False)

我的下一步是将模型加载到 java 中并做出一些预测。但是,我在为 Java 模型指定输入时遇到了问题。

import org.tensorflow.*;
import org.tensorflow.framework.MetaGraphDef;
import org.tensorflow.framework.SignatureDef;
import org.tensorflow.framework.TensorInfo;
import java.util.List;
import java.util.Map;

public class ModelEvaluator {
public static void main(String[] args) throws Exception {
System.out.println("Using TF version: " + TensorFlow.version());

SavedModelBundle model = SavedModelBundle.load("/tmp/modelBinary/1546510038", "serve");
Session session = model.session();

printSignature(model);
printAllNodes(model);

float[][] km1 = new float[1][1];
km1[0][0] = 10;
Tensor inKm1 = Tensor.create(km1);

float[][] km2 = new float[1][1];
km2[0][0] = 10000;
Tensor inKm2 = Tensor.create(km2);

List<Tensor<?>> outputs = session.runner()
.feed("dnn/input_from_feature_columns/input_from_feature_columns/km1/ToFloat", inKm1)
.feed("dnn/input_from_feature_columns/input_from_feature_columns/km2/ToFloat", inKm2)
.fetch("dnn/regression_head/predictions/Identity:0")
.run();

System.out.println("\n\nOutputs from evaluation:");
for (Tensor<?> output : outputs) {
if (output.dataType() == DataType.STRING) {
System.out.println(new String(output.bytesValue()));
} else {
float[] outArray = new float[1];
output.copyTo(outArray);
System.out.println(outArray[0]);
}
}
}

public static void printAllNodes(SavedModelBundle model) {
model.graph().operations().forEachRemaining(x -> {
System.out.println(x.name() + " " + x.numOutputs());
});
}


/**
* This info can also be obtained from a command prompt via the command:
* saved_model_cli show --dir <dir-to-the-model> --tag_set serve --signature_def serving_default
* <p>
* See this where they also try to input data to a DNN regressor:
* https://github.com/tensorflow/tensorflow/issues/12367
* <p>
* https://github.com/tensorflow/tensorflow/issues/14683
* <p>
* https://github.com/migueldeicaza/TensorFlowSharp/issues/293
*/
public static void printSignature(SavedModelBundle model) throws Exception {
MetaGraphDef m = MetaGraphDef.parseFrom(model.metaGraphDef());
SignatureDef sig = m.getSignatureDefOrThrow("serving_default");
int numInputs = sig.getInputsCount();
int i = 1;
System.out.println("-----------------------------------------------");
System.out.println("MODEL SIGNATURE");
System.out.println("Inputs:");
for (Map.Entry<String, TensorInfo> entry : sig.getInputsMap().entrySet()) {
TensorInfo t = entry.getValue();
System.out.printf(
"%d of %d: %-20s (Node name in graph: %-20s, type: %s)\n",
i++, numInputs, entry.getKey(), t.getName(), t.getDtype());
}
int numOutputs = sig.getOutputsCount();
i = 1;
System.out.println("Outputs:");
for (Map.Entry<String, TensorInfo> entry : sig.getOutputsMap().entrySet()) {
TensorInfo t = entry.getValue();
System.out.printf(
"%d of %d: %-20s (Node name in graph: %-20s, type: %s)\n",
i++, numOutputs, entry.getKey(), t.getName(), t.getDtype());
}
System.out.println("-----------------------------------------------");
}
}

从 java 代码可以看出,我为两个节点提供了输入(用“km1”和“km2”命名)。但我想这不是正确的做法。我猜我需要为节点“input_example_tensor:0”提供输入?

所以问题是:我实际上如何为加载到 java 中的模型创建输入?在 python 中,我必须创建一个包含键“km1”和“km2”的字典,并为两个常量张量赋值。

最佳答案

在 Python 上尝试

feature_spec = tf.feature_column.make_parse_example_spec(columns)
example_input_fn = tf.estimator.export.build_parsing_serving_input_receiver_fn(feature_spec)

请查看 build_parsing_serving_input_receiver_fn,以及一个名为 input_example_tensor 的输入,它需要一个序列化的 tf.Example。

在 Java 上,尝试创建一个 Example输入(打包在 org.tensorflow:proto artifact 中),以及一些像这样的代码:

public static void main(String[] args) {
Example example = buildExample(yourFeatureNameAndValueMap);
byte[][] exampleBytes = {example.toByteArray()};
try (Tensor<String> inputBatch = Tensors.create(exampleBytes);
Tensor<Float> output =
yourSession
.runner()
.feed(yourInputsName, inputBatch)
.fetch(yourOutputsName)
.run()
.get(0)
.expect(Float.class)) {
long[] shape = output.shape();
int batchSize = (int) shape[0];
int labelNum = (int) shape[1];
float[][] resultValues = output.copyTo(new float[batchSize][labelNum]);
System.out.println(resultValues);
}
}

public static Example buildExample(Map<String, ?> yourFeatureNameAndValueMap) {
Features.Builder builder = Features.newBuilder();
for (String attr : yourFeatureNameAndValueMap.keySet()) {
Object value = yourFeatureNameAndValueMap.get(attr);
if (value instanceof Float) {
builder.putFeature(attr, feature((Float) value));
} else if (value instanceof float[]) {
builder.putFeature(attr, feature((float[]) value));
} else if (value instanceof String) {
builder.putFeature(attr, feature((String) value));
} else if (value instanceof String[]) {
builder.putFeature(attr, feature((String[]) value));
} else if (value instanceof Long) {
builder.putFeature(attr, feature((Long) value));
} else if (value instanceof long[]) {
builder.putFeature(attr, feature((long[]) value));
} else {
throw new UnsupportedOperationException("Not supported attribute value data type!");
}
}
Features features = builder.build();
Example example = Example.newBuilder()
.setFeatures(features)
.build();
return example;
}

private static Feature feature(String... strings) {
BytesList.Builder b = BytesList.newBuilder();
for (String s : strings) {
b.addValue(ByteString.copyFromUtf8(s));
}
return Feature.newBuilder().setBytesList(b).build();
}

private static Feature feature(float... values) {
FloatList.Builder b = FloatList.newBuilder();
for (float v : values) {
b.addValue(v);
}
return Feature.newBuilder().setFloatList(b).build();
}

private static Feature feature(long... values) {
Int64List.Builder b = Int64List.newBuilder();
for (long v : values) {
b.addValue(v);
}
return Feature.newBuilder().setInt64List(b).build();
}

如果你想自动获取yourInputsNameyourOutputsName,你可以试试

SignatureDef signatureDef;
try {
signatureDef = MetaGraphDef.parseFrom(model.metaGraphDef()).getSignatureDefOrThrow(SIGNATURE_DEF_KEY);
} catch (InvalidProtocolBufferException e) {
throw new RuntimeException(e.getMessage(), e);
}
String yourInputsName = signatureDef.getInputsOrThrow(SIGNATURE_DEF_INPUT_KEY).getName();
String yourOutputsName = signatureDef.getOutputsOrThrow(SIGNATURE_DEF_OUTPUT_KEY).getName();

关于java,请引用DetectObjects.java .关于Python,请引用wide_deep

关于java - 如何在 Java 中为 TensorFlow DNNRegressor 提供输入?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/54091670/

27 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com