- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我正在使用 tensorflow,我想通过同时 CPU 和一个 GPU。
我尝试创建 2 个不同的线程来提供两个不同的 tensorflow session (一个在 CPU 上运行,另一个在 GPU 上运行)。每个线程在一个循环中提供固定数量的批处理(例如,如果我们总共有 100 个批处理,我想为 CPU 分配 20 个批处理,为 GPU 分配 80 个批处理,或者两者的任何可能组合)并组合结果。如果自动完成拆分会更好。
然而,即使在这种情况下,批处理似乎也是以同步方式提供的,因为即使将少量批处理发送到 CPU 并在 GPU 中计算所有其他批处理(以 GPU 为瓶颈),我观察到整体相对于仅使用 GPU 进行的测试,预测时间总是更长。
我希望它会更快,因为当只有 GPU 工作时,CPU 使用率约为 20-30%,因此有一些 CPU 可用于加速计算。
我读了很多讨论,但它们都涉及多个 GPU 的并行性,而不是 GPU 和 CPU 之间的并行性。
这是我编写的代码示例:tensor_cpu
和 tensor_gpu
对象以这种方式从同一个 Keras 模型加载:
with tf.device('/gpu:0'):
model_gpu = load_model('model1.h5')
tensor_gpu = model_gpu(x)
with tf.device('/cpu:0'):
model_cpu = load_model('model1.h5')
tensor_cpu = model_cpu(x)
然后进行如下预测:
def predict_on_device(session, predict_tensor, batches):
for batch in batches:
session.run(predict_tensor, feed_dict={x: batch})
def split_cpu_gpu(batches, num_batches_cpu, tensor_cpu, tensor_gpu):
session1 = tf.Session(config=tf.ConfigProto(log_device_placement=True))
session1.run(tf.global_variables_initializer())
session2 = tf.Session(config=tf.ConfigProto(log_device_placement=True))
session2.run(tf.global_variables_initializer())
coord = tf.train.Coordinator()
t_cpu = Thread(target=predict_on_device, args=(session1, tensor_cpu, batches[:num_batches_cpu]))
t_gpu = Thread(target=predict_on_device, args=(session2, tensor_gpu, batches[num_batches_cpu:]))
t_cpu.start()
t_gpu.start()
coord.join([t_cpu, t_gpu])
session1.close()
session2.close()
我怎样才能实现这种 CPU/GPU 并行化?我想我错过了什么。
非常感谢任何形式的帮助!
最佳答案
这是我的代码,演示了如何并行执行 CPU 和 GPU:
import tensorflow as tf
import numpy as np
from time import time
from threading import Thread
n = 1024 * 8
data_cpu = np.random.uniform(size=[n//16, n]).astype(np.float32)
data_gpu = np.random.uniform(size=[n , n]).astype(np.float32)
with tf.device('/cpu:0'):
x = tf.placeholder(name='x', dtype=tf.float32)
def get_var(name):
return tf.get_variable(name, shape=[n, n])
def op(name):
w = get_var(name)
y = x
for _ in range(8):
y = tf.matmul(y, w)
return y
with tf.device('/cpu:0'):
cpu = op('w_cpu')
with tf.device('/gpu:0'):
gpu = op('w_gpu')
def f(session, y, data):
return session.run(y, feed_dict={x : data})
with tf.Session(config=tf.ConfigProto(log_device_placement=True, intra_op_parallelism_threads=8)) as sess:
sess.run(tf.global_variables_initializer())
coord = tf.train.Coordinator()
threads = []
# comment out 0 or 1 of the following 2 lines:
threads += [Thread(target=f, args=(sess, cpu, data_cpu))]
threads += [Thread(target=f, args=(sess, gpu, data_gpu))]
t0 = time()
for t in threads:
t.start()
coord.join(threads)
t1 = time()
print t1 - t0
计时结果为:
CPU 线程:4-5 秒(当然会因机器而异)。
GPU 线程:5 秒(它做的工作是原来的 16 倍)。
两者同时:5s
请注意,不需要进行 2 次 session (但这对我也很有效)。
您可能会看到不同结果的原因可能是
一些系统资源争用(GPU 执行确实会消耗一些主机系统资源,如果运行 CPU 线程会使它拥挤,这可能会降低性能)
时间不正确
您的部分模型只能在 GPU/CPU 上运行
其他地方的瓶颈
一些其他问题
关于python - Tensorflow:在 GPU 和 CPU 上同时进行预测,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/44255362/
谁能解释或指出在多 GPU/多显示器设置中渲染如何工作的解释(或至少一些线索)? 例如,我安装了 5 个 NVIDIA Quadro 4000 视频卡并连接了 9 个显示器。显示不进行任何分组。刚刚在
以下代码报错: import spacy spacy.require_gpu() Traceback (most recent call last): File "/home/user/Pycha
正如问题已经暗示的那样,我是深度学习的新手。我知道模型的学习过程在没有 GPU 的情况下会很慢。如果我愿意等待,如果我只使用CPU可以吗? 最佳答案 在计算深度学习(以及一般的神经网络)中执行的许多操
我知道 Renderscript 的设计是为了掩盖我正在运行的处理器的事实,但是有没有办法编写代码,以便在支持 GPU 计算的设备(目前是 Nexus 10)上运行显卡?有什么方法可以判断脚本的功能正
关闭。这个问题是opinion-based 。目前不接受答案。 想要改进这个问题吗?更新问题,以便 editing this post 可以用事实和引文来回答它。 . 已关闭 8 年前。 Improv
我想以编程方式找出可用的 GPU 及其当前内存使用情况,并根据内存可用性使用其中一个 GPU。我想在 PyTorch 中执行此操作。 我在这个 post 中看到了以下解决方案: import torc
我喜欢 GPU Gems 的结构化技术摘要。但是自上次发布以来已经过去了很长时间,应该开发新算法来处理新型硬件。 我可以阅读有关最近 GPU 技术成就的哪些信息? 潜伏在编程板上是唯一的方法吗? 最佳
我一直在做一些关于测量数据传输延迟的实验 CPU->GPU 和 GPU->CPU。我发现对于特定消息大小,CPU->GPU 数据传输速率几乎是 GPU->CPU 传输速率的两倍。谁能解释我为什么会这样
当我使用选项 --gres=gpu:1 向具有两个 GPU 的节点提交 SLURM 作业时,如何获取为该作业分配的 GPU ID?是否有用于此目的的环境变量?我使用的 GPU 都是 nvidia GP
我用 gpu、cuda 7.0 和 cudnn 6.5 安装了 tensorflow。当我导入 tensorflow 时,它运行良好。 我正在尝试在 Tensorflow 上运行一个简单的矩阵乘法,但
我们正在寻找有关 slurm salloc gpu 分配的一些建议。目前,给定: % salloc -n 4 -c 2 -gres=gpu:1 % srun env | grep CUDA CUD
我是否必须自定义为非 GPU Tensorflow 库编写的代码以适应tensorflow-gpu 库? 我有一个 GPU,想运行仅为非 GPU tensorflow 库编写的 Python 代码。我
我是否必须自定义为非 GPU Tensorflow 库编写的代码以适应tensorflow-gpu 库? 我有一个 GPU,想运行仅为非 GPU tensorflow 库编写的 Python 代码。我
我正在使用 pytorch 框架训练网络。我的电脑里有 K40 GPU。上周,我在同一台计算机上添加了 1080。 在我的第一个实验中,我在两个 GPU 上观察到相同的结果。然后,我在两个 GPU 上
有没有办法在 Slurm 上超额订阅 GPU,即运行共享一个 GPU 的多个作业/作业步骤?我们只找到了超额订阅 CPU 和内存的方法,但没有找到 GPU。 我们希望在同一 GPU 上并行运行多个作业
我可以访问 4 个 GPU(不是 root 用户)。其中一个 GPU(2 号)表现怪异,它们的一些内存被阻塞但功耗和温度非常低(好像没有任何东西在上面运行)。请参阅下图中 nvidia-smi 的详细
我正在尝试通过 Tensorflow 运行示例 seq2seq,但它不会使用 GPU。以下是我在带有 Tesla K20x 的 Linux 系统上安装 Tensorflow 所采取的步骤 git cl
一位电气工程师最近提醒我不要使用 GPU 进行科学计算(例如,在精度非常重要的地方),因为没有像 CPU 那样的硬件保护措施。这是真的吗?如果是的话,典型硬件中的问题有多普遍/严重? 最佳答案 实际上
关闭。这个问题不满足Stack Overflow guidelines .它目前不接受答案。 想改善这个问题吗?更新问题,使其成为 on-topic对于堆栈溢出。 7年前关闭。 Improve thi
最近我研究了强化学习,有一个问题困扰着我,我找不到答案:如何使用 GPU 有效地完成训练?据我所知,需要与环境持续交互,这对我来说似乎是一个巨大的瓶颈,因为这项任务通常是非数学的/不可并行化的。然而,
我是一名优秀的程序员,十分优秀!