- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我有一个 df(样本最后粘贴在这里)。我正在寻找每个过去 10 分钟或任何其他滚动周期中哪个 tradePrice
具有最多的 tradeVolume
。
这是根据附带的示例数据在 xls 中完成的数据透视表。
minute
tradePrice Data 0 1 10 Total Result
12548 Sum - tradeVolume 3 3
Count - tradePrice 2 2
12548.5 Sum - tradeVolume 1 1
Count - tradePrice 1 1
12549 Sum - tradeVolume 1 1
Count - tradePrice 1 1
12549.5 Sum - tradeVolume 95 95
Count - tradePrice 5 5
12550 Sum - tradeVolume 6 6
Count - tradePrice 4 4
12559 Sum - tradeVolume 93 93
Count - tradePrice 1 1
12559.5 Sum - tradeVolume 1 1
Count - tradePrice 1 1
12560 Sum - tradeVolume 5 5
Count - tradePrice 4 4
12560.5 Sum - tradeVolume 3 5 8
Count - tradePrice 3 2 5
12561 Sum - tradeVolume 4 5 9
Count - tradePrice 2 3 5
12561.5 Sum - tradeVolume 3 2 5
Count - tradePrice 3 1 4
12562 Sum - tradeVolume 9 7 16
Count - tradePrice 8 1 9
12562.5 Sum - tradeVolume 6 2 8
Count - tradePrice 2 2 4
12563 Sum - tradeVolume 2 2
Count - tradePrice 1 1
Total Sum - tradeVolume 120 27 106 253
Total Count - tradePrice 20 14 13 47
结果需要是一个像这样搜索交易量最大的价格的 df):
Price Volume
02:00:00 AM 12559 93
02:01:00 AM 12562 7
02:10:00 AM 12549.5 95
为了获得 1 分钟。结果我分组并应用了以下功能
def f(x): # function to find the POC price and volume
a = x['tradePrice'].value_counts().index[0]
b = x.loc[x['tradePrice'] == a, 'tradeVolume'].sum()
return pd.Series([a, b], ['POC_Price', 'POC_Volume'])
groupbytime = (str(Time)+"min")#ther is a column name by this
groups = df.groupby(groupbytime,as_index=True)
df_POC = groups.apply(f) #applys the function of the POC on the grouped data
我的问题是:我怎样才能得到相同的解决方案,但每个滚动时间段(不能少于 1 分钟)所以最后 10 分钟的预期结果(以最大交易量交易的价格)是:
Price Volume
02:10:00 AM 12549.5 95
提前致谢!
示例数据:
dateTime tradePrice tradeVolume 1min time_of_day_10 time_of_day_30 date hour minute
0 2017-09-19 02:00:04 12559 93 2017-09-19 02:00:00 02:00:00 02:00:00 2017-09-19 2 0
49 2017-09-19 02:00:11 12562 1 2017-09-19 02:00:00 02:00:00 02:00:00 2017-09-19 2 0
50 2017-09-19 02:00:12 12563 2 2017-09-19 02:00:00 02:00:00 02:00:00 2017-09-19 2 0
51 2017-09-19 02:00:12 12562 1 2017-09-19 02:00:00 02:00:00 02:00:00 2017-09-19 2 0
122 2017-09-19 02:00:34 12561.5 1 2017-09-19 02:00:00 02:00:00 02:00:00 2017-09-19 2 0
123 2017-09-19 02:00:34 12562 1 2017-09-19 02:00:00 02:00:00 02:00:00 2017-09-19 2 0
127 2017-09-19 02:00:34 12562 1 2017-09-19 02:00:00 02:00:00 02:00:00 2017-09-19 2 0
129 2017-09-19 02:00:35 12561 2 2017-09-19 02:00:00 02:00:00 02:00:00 2017-09-19 2 0
130 2017-09-19 02:00:35 12560.5 1 2017-09-19 02:00:00 02:00:00 02:00:00 2017-09-19 2 0
131 2017-09-19 02:00:35 12561.5 1 2017-09-19 02:00:00 02:00:00 02:00:00 2017-09-19 2 0
135 2017-09-19 02:00:39 12562 1 2017-09-19 02:00:00 02:00:00 02:00:00 2017-09-19 2 0
136 2017-09-19 02:00:39 12562 1 2017-09-19 02:00:00 02:00:00 02:00:00 2017-09-19 2 0
137 2017-09-19 02:00:43 12561.5 1 2017-09-19 02:00:00 02:00:00 02:00:00 2017-09-19 2 0
138 2017-09-19 02:00:43 12561 2 2017-09-19 02:00:00 02:00:00 02:00:00 2017-09-19 2 0
139 2017-09-19 02:00:43 12560.5 1 2017-09-19 02:00:00 02:00:00 02:00:00 2017-09-19 2 0
140 2017-09-19 02:00:43 12560.5 1 2017-09-19 02:00:00 02:00:00 02:00:00 2017-09-19 2 0
152 2017-09-19 02:00:45 12562 2 2017-09-19 02:00:00 02:00:00 02:00:00 2017-09-19 2 0
153 2017-09-19 02:00:46 12562.5 4 2017-09-19 02:00:00 02:00:00 02:00:00 2017-09-19 2 0
166 2017-09-19 02:00:58 12562 1 2017-09-19 02:00:00 02:00:00 02:00:00 2017-09-19 2 0
167 2017-09-19 02:00:58 12562.5 2 2017-09-19 02:00:00 02:00:00 02:00:00 2017-09-19 2 0
168 2017-09-19 02:01:00 12562 7 2017-09-19 02:01:00 02:00:00 02:00:00 2017-09-19 2 1
169 2017-09-19 02:01:00 12562.5 1 2017-09-19 02:01:00 02:00:00 02:00:00 2017-09-19 2 1
170 2017-09-19 02:01:00 12562.5 1 2017-09-19 02:01:00 02:00:00 02:00:00 2017-09-19 2 1
171 2017-09-19 02:01:00 12561.5 2 2017-09-19 02:01:00 02:00:00 02:00:00 2017-09-19 2 1
175 2017-09-19 02:01:03 12561 1 2017-09-19 02:01:00 02:00:00 02:00:00 2017-09-19 2 1
176 2017-09-19 02:01:03 12561 3 2017-09-19 02:01:00 02:00:00 02:00:00 2017-09-19 2 1
187 2017-09-19 02:01:07 12560.5 2 2017-09-19 02:01:00 02:00:00 02:00:00 2017-09-19 2 1
188 2017-09-19 02:01:08 12561 1 2017-09-19 02:01:00 02:00:00 02:00:00 2017-09-19 2 1
189 2017-09-19 02:01:10 12560 1 2017-09-19 02:01:00 02:00:00 02:00:00 2017-09-19 2 1
190 2017-09-19 02:01:10 12560 1 2017-09-19 02:01:00 02:00:00 02:00:00 2017-09-19 2 1
191 2017-09-19 02:01:10 12559.5 1 2017-09-19 02:01:00 02:00:00 02:00:00 2017-09-19 2 1
192 2017-09-19 02:01:11 12560 1 2017-09-19 02:01:00 02:00:00 02:00:00 2017-09-19 2 1
193 2017-09-19 02:01:12 12560 2 2017-09-19 02:01:00 02:00:00 02:00:00 2017-09-19 2 1
194 2017-09-19 02:01:12 12560.5 3 2017-09-19 02:01:00 02:00:00 02:00:00 2017-09-19 2 1
593 2017-09-19 02:10:00 12550 1 2017-09-19 02:10:00 02:10:00 02:00:00 2017-09-19 2 10
594 2017-09-19 02:10:00 12549.5 12 2017-09-19 02:10:00 02:10:00 02:00:00 2017-09-19 2 10
604 2017-09-19 02:10:12 12548.5 1 2017-09-19 02:10:00 02:10:00 02:00:00 2017-09-19 2 10
605 2017-09-19 02:10:15 12549.5 22 2017-09-19 02:10:00 02:10:00 02:00:00 2017-09-19 2 10
606 2017-09-19 02:10:16 12549.5 21 2017-09-19 02:10:00 02:10:00 02:00:00 2017-09-19 2 10
636 2017-09-19 02:10:45 12548 1 2017-09-19 02:10:00 02:10:00 02:00:00 2017-09-19 2 10
637 2017-09-19 02:10:47 12548 2 2017-09-19 02:10:00 02:10:00 02:00:00 2017-09-19 2 10
638 2017-09-19 02:10:47 12549.5 23 2017-09-19 02:10:00 02:10:00 02:00:00 2017-09-19 2 10
639 2017-09-19 02:10:48 12549.5 17 2017-09-19 02:10:00 02:10:00 02:00:00 2017-09-19 2 10
640 2017-09-19 02:10:49 12549 1 2017-09-19 02:10:00 02:10:00 02:00:00 2017-09-19 2 10
665 2017-09-19 02:10:58 12550 1 2017-09-19 02:10:00 02:10:00 02:00:00 2017-09-19 2 10
666 2017-09-19 02:10:58 12550 1 2017-09-19 02:10:00 02:10:00 02:00:00 2017-09-19 2 10
667 2017-09-19 02:10:58 12550 3 2017-09-19 02:10:00 02:10:00 02:00:00 2017-09-19 2 10
最佳答案
如果我正确理解您的问题,您需要选择时间粒度和时间窗口。然后,您可以结合使用 groupby + unstack + rolling 来完成此操作。
首先是groupby:
time_grain = '1min'
df = df.groupby([pd.Grouper(key='dateTime', freq=time_grain),'tradePrice']).tradeVolume.sum()
dateTime tradePrice
2017-09-19 02:00:00 12559.0 93
12560.5 3
12561.0 4
12561.5 3
12562.0 9
12562.5 6
12563.0 2
2017-09-19 02:01:00 12559.5 1
12560.0 5
12560.5 5
12561.0 5
12561.5 2
12562.0 7
12562.5 2
2017-09-19 02:10:00 12548.0 3
12548.5 1
12549.0 1
12549.5 95
12550.0 6
Name: tradeVolume, dtype: int64
然后展开+滚动:
window_size = '10min'
df = df.unstack('tradePrice').rolling(window_size).sum()
tradePrice 12548.0 12548.5 12549.0 12549.5 12550.0 12559.0 \
dateTime
2017-09-19 02:00:00 NaN NaN NaN NaN NaN 93.0
2017-09-19 02:01:00 NaN NaN NaN NaN NaN 93.0
2017-09-19 02:10:00 3.0 1.0 1.0 95.0 6.0 NaN
tradePrice 12559.5 12560.0 12560.5 12561.0 12561.5 12562.0 \
dateTime
2017-09-19 02:00:00 NaN NaN 3.0 4.0 3.0 9.0
2017-09-19 02:01:00 1.0 5.0 8.0 9.0 5.0 16.0
2017-09-19 02:10:00 1.0 5.0 5.0 5.0 2.0 7.0
tradePrice 12562.5 12563.0
dateTime
2017-09-19 02:00:00 6.0 2.0
2017-09-19 02:01:00 8.0 2.0
2017-09-19 02:10:00 2.0 NaN
最后将 tradePrice 堆叠回索引并找到每个时间段具有最高值的索引:
df = df.stack('tradePrice')
idx_list = df.groupby('dateTime').idxmax()
result = df.loc[idx_list]
dateTime tradePrice
2017-09-19 02:00:00 12559.0 93.0
2017-09-19 02:01:00 12559.0 93.0
2017-09-19 02:10:00 12549.5 95.0
dtype: float64
请注意,如果您将滚动与时间偏移一起使用,则滚动默认的最小观察次数为 1。这就是为什么您会得到 3 个结果行。
我认为这种方法的最大缺点是对于具有大量价格点的大数据框,这将占用大量内存(因为每个价格点都会生成一个新列)。
关于python - python中的滚动数据透视表,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/49451313/
我正在处理一组标记为 160 个组的 173k 点。我想通过合并最接近的(到 9 或 10 个组)来减少组/集群的数量。我搜索过 sklearn 或类似的库,但没有成功。 我猜它只是通过 knn 聚类
我有一个扁平数字列表,这些数字逻辑上以 3 为一组,其中每个三元组是 (number, __ignored, flag[0 or 1]),例如: [7,56,1, 8,0,0, 2,0,0, 6,1,
我正在使用 pipenv 来管理我的包。我想编写一个 python 脚本来调用另一个使用不同虚拟环境(VE)的 python 脚本。 如何运行使用 VE1 的 python 脚本 1 并调用另一个 p
假设我有一个文件 script.py 位于 path = "foo/bar/script.py"。我正在寻找一种在 Python 中通过函数 execute_script() 从我的主要 Python
这听起来像是谜语或笑话,但实际上我还没有找到这个问题的答案。 问题到底是什么? 我想运行 2 个脚本。在第一个脚本中,我调用另一个脚本,但我希望它们继续并行,而不是在两个单独的线程中。主要是我不希望第
我有一个带有 python 2.5.5 的软件。我想发送一个命令,该命令将在 python 2.7.5 中启动一个脚本,然后继续执行该脚本。 我试过用 #!python2.7.5 和http://re
我在 python 命令行(使用 python 2.7)中,并尝试运行 Python 脚本。我的操作系统是 Windows 7。我已将我的目录设置为包含我所有脚本的文件夹,使用: os.chdir("
剧透:部分解决(见最后)。 以下是使用 Python 嵌入的代码示例: #include int main(int argc, char** argv) { Py_SetPythonHome
假设我有以下列表,对应于及时的股票价格: prices = [1, 3, 7, 10, 9, 8, 5, 3, 6, 8, 12, 9, 6, 10, 13, 8, 4, 11] 我想确定以下总体上最
所以我试图在选择某个单选按钮时更改此框架的背景。 我的框架位于一个类中,并且单选按钮的功能位于该类之外。 (这样我就可以在所有其他框架上调用它们。) 问题是每当我选择单选按钮时都会出现以下错误: co
我正在尝试将字符串与 python 中的正则表达式进行比较,如下所示, #!/usr/bin/env python3 import re str1 = "Expecting property name
考虑以下原型(prototype) Boost.Python 模块,该模块从单独的 C++ 头文件中引入类“D”。 /* file: a/b.cpp */ BOOST_PYTHON_MODULE(c)
如何编写一个程序来“识别函数调用的行号?” python 检查模块提供了定位行号的选项,但是, def di(): return inspect.currentframe().f_back.f_l
我已经使用 macports 安装了 Python 2.7,并且由于我的 $PATH 变量,这就是我输入 $ python 时得到的变量。然而,virtualenv 默认使用 Python 2.6,除
我只想问如何加快 python 上的 re.search 速度。 我有一个很长的字符串行,长度为 176861(即带有一些符号的字母数字字符),我使用此函数测试了该行以进行研究: def getExe
list1= [u'%app%%General%%Council%', u'%people%', u'%people%%Regional%%Council%%Mandate%', u'%ppp%%Ge
这个问题在这里已经有了答案: Is it Pythonic to use list comprehensions for just side effects? (7 个答案) 关闭 4 个月前。 告
我想用 Python 将两个列表组合成一个列表,方法如下: a = [1,1,1,2,2,2,3,3,3,3] b= ["Sun", "is", "bright", "June","and" ,"Ju
我正在运行带有最新 Boost 发行版 (1.55.0) 的 Mac OS X 10.8.4 (Darwin 12.4.0)。我正在按照说明 here构建包含在我的发行版中的教程 Boost-Pyth
学习 Python,我正在尝试制作一个没有任何第 3 方库的网络抓取工具,这样过程对我来说并没有简化,而且我知道我在做什么。我浏览了一些在线资源,但所有这些都让我对某些事情感到困惑。 html 看起来
我是一名优秀的程序员,十分优秀!