- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我正在尝试使用 scipy.optimize
最小化以下函数:
这是它的梯度:
(对于那些感兴趣的人,这是用于成对比较的 Bradley-Terry-Luce 模型的似然函数。与逻辑回归密切相关。)
很明显,向所有参数添加常量不会改变函数的值。因此,我让\theta_1 = 0。以下是目标函数和梯度在 python 中的实现(theta 在这里变为 x
):
def objective(x):
x = np.insert(x, 0, 0.0)
tiles = np.tile(x, (len(x), 1))
combs = tiles.T - tiles
exps = np.dstack((zeros, combs))
return np.sum(cijs * scipy.misc.logsumexp(exps, axis=2))
def gradient(x):
zeros = np.zeros(cijs.shape)
x = np.insert(x, 0, 0.0)
tiles = np.tile(x, (len(x), 1))
combs = tiles - tiles.T
one = 1.0 / (np.exp(combs) + 1)
two = 1.0 / (np.exp(combs.T) + 1)
mat = (cijs * one) + (cijs.T * two)
grad = np.sum(mat, axis=0)
return grad[1:] # Don't return the first element
这是一个 cijs
的例子:
[[ 0 5 1 4 6]
[ 4 0 2 2 0]
[ 6 4 0 9 3]
[ 6 8 3 0 5]
[10 7 11 4 0]]
这是我为执行最小化而运行的代码:
x0 = numpy.random.random(nb_items - 1)
# Let's try one algorithm...
xopt1 = scipy.optimize.fmin_bfgs(objective, x0, fprime=gradient, disp=True)
# And another one...
xopt2 = scipy.optimize.fmin_cg(objective, x0, fprime=gradient, disp=True)
然而,它总是在第一次迭代中失败:
Warning: Desired error not necessarily achieved due to precision loss.
Current function value: 73.290610
Iterations: 0
Function evaluations: 38
Gradient evaluations: 27
我不知道为什么会失败。由于这一行而显示错误: https://github.com/scipy/scipy/blob/master/scipy/optimize/optimize.py#L853
所以这个“Wolfe 线搜索”似乎没有成功,但我不知道如何从这里继续......感谢任何帮助!
最佳答案
作为@pv。作为评论指出,我在计算梯度时犯了一个错误。首先,我的目标函数梯度的正确(数学)表达式是:
(注意减号。)此外,我的 Python 实现完全错误,除了符号错误之外。这是我更新的渐变:
def gradient(x):
nb_comparisons = cijs + cijs.T
x = np.insert(x, 0, 0.0)
tiles = np.tile(x, (len(x), 1))
combs = tiles - tiles.T
probs = 1.0 / (np.exp(combs) + 1)
mat = (nb_comparisons * probs) - cijs
grad = np.sum(mat, axis=1)
return grad[1:] # Don't return the first element.
为了调试它,我使用了:
scipy.optimize.check_grad
:表明我的梯度函数产生的结果与近似(有限差分)梯度相去甚远。scipy.optimize.approx_fprime
了解值应该是什么样子。关于python - 使用 scipy.optimize 最小化多元可微函数,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/23244816/
我在使用 cx_freeze 和 scipy 时无法编译 exe。特别是,我的脚本使用 from scipy.interpolate import griddata 构建过程似乎成功完成,但是当我尝试
是否可以通过函数在 scipy 中定义一个稀疏矩阵,而不是列出所有可能的值?在文档中,我看到可以通过以下方式创建稀疏矩阵 There are seven available sparse matrix
SciPy为非线性最小二乘问题提供了两种功能: optimize.leastsq()仅使用Levenberg-Marquardt算法。 optimize.least_squares()允许我们选择Le
SciPy 中的求解器能否处理复数值(即 x=x'+i*x")?我对使用 Nelder-Mead 类型的最小化函数特别感兴趣。我通常是 Matlab 用户,我知道 Matlab 没有复杂的求解器。如果
我有看起来像这样的数据集: position number_of_tag_at_this_position 3 4 8 6 13 25 23 12 我想对这个数据集应用三次样条插值来插值标签密度;为此
所以,我正在处理维基百科转储,以计算大约 5,700,000 个页面的页面排名。这些文件经过预处理,因此不是 XML 格式。 它们取自 http://haselgrove.id.au/wikipedi
Scipy 和 Numpy 返回归一化的特征向量。我正在尝试将这些向量用于物理应用程序,我需要它们不被标准化。 例如a = np.matrix('-3, 2; -1, 0') W,V = spl.ei
基于此处提供的解释 1 ,我正在尝试使用相同的想法来加速以下积分: import scipy.integrate as si from scipy.optimize import root, fsol
这很容易重新创建。 如果我的脚本 foo.py 是: import scipy 然后运行: python pyinstaller.py --onefile foo.py 当我启动 foo.exe 时,
我想在我的代码中使用 scipy.spatial.distance.cosine。如果我执行类似 import scipy.spatial 或 from scipy import spatial 的操
Numpy 有一个基本的 pxd,声明它的 c 接口(interface)到 cython。是否有用于 scipy 组件(尤其是 scipy.integrate.quadpack)的 pxd? 或者,
有人可以帮我处理 scipy.stats.chisquare 吗?我没有统计/数学背景,我正在使用来自 https://en.wikipedia.org/wiki/Chi-squared_test 的
我正在使用 scipy.odr 拟合数据与权重,但我不知道如何获得拟合优度或 R 平方的度量。有没有人对如何使用函数存储的输出获得此度量有建议? 最佳答案 res_var Output 的属性是所谓的
我刚刚下载了新的 python 3.8,我正在尝试使用以下方法安装 scipy 包: pip3.8 install scipy 但是构建失败并出现以下错误: **Failed to build sci
我有 my own triangulation algorithm它基于 Delaunay 条件和梯度创建三角剖分,使三角形与梯度对齐。 这是一个示例输出: 以上描述与问题无关,但对于上下文是必要的。
这是一个非常基本的问题,但我似乎找不到好的答案。 scipy 到底计算什么内容 scipy.stats.norm(50,10).pdf(45) 据我了解,平均值为 50、标准差为 10 的高斯中像 4
我正在使用 curve_fit 来拟合一阶动态系统的阶跃响应,以估计增益和时间常数。我使用两种方法。第一种方法是在时域中拟合从函数生成的曲线。 # define the first order dyn
让我们假设 x ~ Poisson(2.5);我想计算类似 E(x | x > 2) 的东西。 我认为这可以通过 .dist.expect 运算符来完成,即: D = stats.poisson(2.
我正在通过 OpenMDAO 使用 SLSQP 来解决优化问题。优化工作充分;最后的 SLSQP 输出如下: Optimization terminated successfully. (Exi
log( VA ) = gamma - (1/eta)log[alpha L ^(-eta) + 测试版 K ^(-eta)] 我试图用非线性最小二乘法估计上述函数。我为此使用了 3 个不同的包(Sc
我是一名优秀的程序员,十分优秀!