- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我已经通过将它们应用到FFT卷积输出上来测试了两个重缩放功能。
第一个是从this link收集的。
public static void RescaleComplex(Complex[,] convolve)
{
int imageWidth = convolve.GetLength(0);
int imageHeight = convolve.GetLength(1);
double maxAmp = 0.0;
for (int i = 0; i < imageWidth; i++)
{
for (int j = 0; j < imageHeight; j++)
{
maxAmp = Math.Max(maxAmp, convolve[i, j].Magnitude);
}
}
double scale = 1.0 / maxAmp;
for (int i = 0; i < imageWidth; i++)
{
for (int j = 0; j < imageHeight; j++)
{
convolve[i, j] = new Complex(convolve[i, j].Real * scale,
convolve[i, j].Imaginary * scale);
}
}
}
public static void RescaleComplex(Complex[,] convolve)
{
int imageWidth = convolve.GetLength(0);
int imageHeight = convolve.GetLength(1);
double scale = imageWidth * imageHeight;
for (int j = 0; j < imageHeight; j++)
{
for (int i = 0; i < imageWidth; i++)
{
double re = Math.Max(0.0, Math.Min(convolve[i, j].Real * scale, 1.0));
double im = Math.Max(0.0, Math.Min(convolve[i, j].Imaginary * scale, 1.0));
convolve[i, j] = new Complex(re, im);
}
}
}
0 -1 0
-1 5 -1
0 -1 0
private static Complex[,] ConvolutionFft(Complex[,] image, Complex[,] kernel)
{
Complex[,] imageCopy = (Complex[,])image.Clone();
Complex[,] kernelCopy = (Complex[,])kernel.Clone();
Complex[,] convolve = null;
int imageWidth = imageCopy.GetLength(0);
int imageHeight = imageCopy.GetLength(1);
int kernelWidth = kernelCopy.GetLength(0);
int kernelHeight = kernelCopy.GetLength(1);
if (imageWidth == kernelWidth && imageHeight == kernelHeight)
{
Complex[,] fftConvolved = new Complex[imageWidth, imageHeight];
Complex[,] fftImage = FourierTransform.ForwardFFT(imageCopy);
Complex[,] fftKernel = FourierTransform.ForwardFFT(kernelCopy);
for (int j = 0; j < imageHeight; j++)
{
for (int i = 0; i < imageWidth; i++)
{
fftConvolved[i, j] = fftImage[i, j] * fftKernel[i, j];
}
}
convolve = FourierTransform.InverseFFT(fftConvolved);
RescaleComplex(convolve);
convolve = FourierShifter.ShiftFft(convolve);
}
else
{
throw new Exception("Padded image and kernel dimensions must be same.");
}
return convolve;
}
最佳答案
这并不是真正的难题。这只是显示范围有限和您的期望的问题,这在两种情况下是不同的。
0, -1, 0
-1, 6, -1
0, -1, 0
N = imageWidth * imageHeight
重新缩放频域卷积结果。这样会产生正确的输出。您需要应用此缩放比例,这表明您的正向FFT通过
1/N
进行缩放,而逆FFT不会进行缩放。
IFFT(FFT(img))==img
,必须通过
1/N
缩放FFT或IFFT。通常,是按比例缩放的IFFT。原因是卷积然后按预期进行,而没有任何进一步的缩放。要看到这一点,请想象一张所有像素都具有相同值的图像。
FFT(img)
在所有地方都为零,除了0频率分量(DC分量)为
sum(img)
。归一化内核的总和为1,因此其DC分量为
sum(kernel)==1
。将这两者相乘,我们再次获得一个像输入频谱一样的频谱,其直流分量为
sum(img)
。它的逆变换将等于
img
。这正是我们对此卷积的期望。
FFT(img)
的DC组件将为
sum(img)/N
。内核的DC组件将为
1/N
。将这两者相乘,得到
sum(img)/(N*N)
的DC分量。它的逆变换将等于
img/N
。因此,您需要乘以
N
以获得预期的结果。这正是在归一化的“矩阵内核”的频域卷积中所看到的。
FFT(kernel)
的DC分量是
sum(img)/N
,它与
FFT(img)
的乘积有一个DC分量
sum(img)*sum(img)/(N*N)
,因此逆变换的对比度是
sum(img)/N
的乘积,再乘以
N
仍然会给您带来一个太大的
sum(img)
系数。如果要标准化内核,则将其除以
sum(img)
,这会将您的输出带入预期的范围内。
关于c# - FFT卷积后重新缩放复杂数据,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/51505732/
FFT 库(例如 FFTW 或 numpy.fft)通常提供两个函数 fft() 和 ifft()(及其用于实值输入的特殊版本)。这些功能似乎被定义为 ifft(fft(X)) == X 和 fft(
如果我有一个特定大小 M(2 的幂)的 FFT 实现,我如何计算一组大小 P=k*M 的 FFT,其中 k 也是 2 的幂? #define M 256 #define P 1024 comple
下午好! 我正在尝试基于我已有的简单递归 FFT 实现来开发 NTT 算法。 考虑以下代码(coefficients'的长度,让它为m,是2的精确幂): /// /// Calculates the
我正在分析时间序列数据,并希望提取 5 个主要频率分量并将其用作训练机器学习模型的特征。我的数据集是 921 x 10080 。每行是一个时间序列,总共有 921 个。 在探索可能的方法时,我遇到了各
我找不到任何官方文档来证明 scipy.fft 实际上是 numpy.fft.fftpack.fft 的链接。这是显示链接的 iPython session : In [1]: import scip
文档说 np.fft.fft 这样做: Compute the one-dimensional discrete Fourier Transform. 和 np.fft.rfft 这样做: Compu
近一个月来,我一直在与一个非常奇怪的错误作斗争。问你们是我最后的希望。我用 C 编写了一个程序,它集成了 2d Cahn–Hilliard equation在傅里叶(或倒数)空间中使用隐式欧拉 (IE
我一直在制作一个例程,使用 NumPy/Scipy 测量两个光谱之间的相位差。 我已经有了Matlab写的例程,所以我基本上是用NumPy重新实现了函数和相应的单元测试。但是,我发现单元测试失败了,因
我正在研究使用 Renderscript 对大型复杂输入数组执行 FFT。 FFT 是相当标准的,因为它涉及三个循环,但内部循环执行 FFT 中的蝶形运算。因为每个蝴蝶使用数组的不同部分,所以没有明显
我需要通过修改 FFT 结果来均衡音乐样本。 我知道如何获得每个输出虚数的频率,问题是修改这个值以获得“均衡器效果”。 我需要知道如何缩放这个值。 条目大小为 4096 个样本,采样率为 44100
我将在 kiss-fft 之前制定几个计划同时(平行),我可以这样做吗,或者换句话说,kiss-fft 线程安全吗? 谢谢 最佳答案 自述文件: No static data is used. Th
要在频域中插入信号,可以在时域中填充零并执行 FFT。 假设给定向量 X 中的元素数为 N 并且 Y 与 X 相同但在一侧用 N 零填充。然后下面给出相同的结果。 $$\hat{x}(k)=\sum_
我通过相关了解了 DFT 的工作原理,并将其用作理解 FFT 结果的基础。如果我有一个以 44.1kHz 采样的离散信号,那么这意味着如果我要获取 1 秒的数据,我将有 44,100 个样本。为了对其
有人知道 Mayer FFT 的实现吗(我不必花很多时间研究代码)? 我正在尝试执行卷积,ifft 似乎产生了我称之为“镜像”的输出。换句话说,我的内核+信号长度被限制为 N/2 并且占据 n=0..
有人知道 Mayer FFT 的实现吗(我不必花很多时间研究代码)? 我正在尝试执行卷积,ifft 似乎产生了我称之为“镜像”的输出。换句话说,我的内核+信号长度被限制为 N/2 并且占据 n=0..
我有以下代码...请注意#生成正弦曲线下的两行。一个使用比另一个更高的 2pi 精度值,但它们仍然应该给出几乎相同的结果。 import numpy as np import matplotlib.p
我正在努力确保 FFTW 做我认为它应该做的事情,但我遇到了问题。我正在使用 OpenCV 的 cv::Mat。我制作了一个测试程序,给定一个 Mat f,计算 ifft(fft(f)) 并将结果与
我是从事电信项目的计算机程序员。 在我们的项目中,我必须将一系列复数更改为它们的傅立叶变换。因此我需要一个高效的 FFT 代码来满足 C89 标准。 我正在使用以下代码,它运行良好: shor
我目前正在尝试了解 numpy 的 fft 函数。为此,我测试了以下假设: 我有两个函数,f(x) = x^2 和 g(x) = f'(x) = 2*x。根据傅立叶变换定律和 wolfram alph
我一直在使用 FFT,目前正在尝试使用 FFT 从文件中获取声音波形(最终对其进行修改),然后将修改后的波形输出回文件。我得到了声波的 FFT,然后对其使用了反 FFT 函数,但输出文件听起来一点也不
我是一名优秀的程序员,十分优秀!