gpt4 book ai didi

python - 通过 readlines(size) 提高大文件搜索的效率

转载 作者:太空狗 更新时间:2023-10-29 21:52:10 28 4
gpt4 key购买 nike

我是 Python 的新手,目前正在使用 Python 2。我有一些源文件,每个文件都包含大量数据(大约 1900 万行)。它看起来像下面这样:

apple   \t N   \t apple
n&apos
garden \t N \t garden
b\ta\md
great \t Adj \t great
nice \t Adj \t (unknown)
etc

我的任务是在每个文件的第 3 列中搜索一些目标词,每次在语料库中找到一个目标词,就必须将这个词前后的 10 个词添加到多维词典中。

编辑:应排除包含“&”、“\”或字符串“(unknown)”的行。

我尝试使用 readlines() 和 enumerate() 来解决这个问题,如下面的代码所示。代码做了它应该做的,但对于源文件中提供的数据量来说,它显然不够高效。

我知道 readlines() 或 read() 不应该用于巨大的数据集,因为它将整个文件加载到内存中。尽管如此,逐行读取文件,我并没有设法使用枚举方法来获取目标词前后的10个词。我也不能使用 mmap,因为我无权在该文件上使用它。

因此,我想具有一定大小限制的 readlines 方法将是最有效的解决方案。但是,为此,我会不会犯一些错误,因为每次到达大小限制的末尾时,目标词之后的 10 个词都不会被捕获,因为代码刚刚中断?

def get_target_to_dict(file):
targets_dict = {}
with open(file) as f:
for line in f:
targets_dict[line.strip()] = {}
return targets_dict

targets_dict = get_target_to_dict('targets_uniq.txt')
# browse directory and process each file
# find the target words to include the 10 words before and after to the dictionary
# exclude lines starting with <,-,; to just have raw text

def get_co_occurence(path_file_dir, targets, results):
lines = []
for file in os.listdir(path_file_dir):
if file.startswith('corpus'):
path_file = os.path.join(path_file_dir, file)
with gzip.open(path_file) as corpusfile:
# PROBLEMATIC CODE HERE
# lines = corpusfile.readlines()
for line in corpusfile:
if re.match('[A-Z]|[a-z]', line):
if '(unknown)' in line:
continue
elif '\\' in line:
continue
elif '&' in line:
continue
lines.append(line)
for i, line in enumerate(lines):
line = line.strip()
if re.match('[A-Z][a-z]', line):
parts = line.split('\t')
lemma = parts[2]
if lemma in targets:
pos = parts[1]
if pos not in targets[lemma]:
targets[lemma][pos] = {}
counts = targets[lemma][pos]
context = []
# look at 10 previous lines
for j in range(max(0, i-10), i):
context.append(lines[j])
# look at the next 10 lines
for j in range(i+1, min(i+11, len(lines))):
context.append(lines[j])
# END OF PROBLEMATIC CODE
for context_line in context:
context_line = context_line.strip()
parts_context = context_line.split('\t')
context_lemma = parts_context[2]
if context_lemma not in counts:
counts[context_lemma] = {}
context_pos = parts_context[1]
if context_pos not in counts[context_lemma]:
counts[context_lemma][context_pos] = 0
counts[context_lemma][context_pos] += 1
csvwriter = csv.writer(results, delimiter='\t')
for k,v in targets.iteritems():
for k2,v2 in v.iteritems():
for k3,v3 in v2.iteritems():
for k4,v4 in v3.iteritems():
csvwriter.writerow([str(k), str(k2), str(k3), str(k4), str(v4)])
#print(str(k) + "\t" + str(k2) + "\t" + str(k3) + "\t" + str(k4) + "\t" + str(v4))

results = open('results_corpus.csv', 'wb')
word_occurrence = get_co_occurence(path_file_dir, targets_dict, results)

出于完整性原因,我复制了整个代码部分,因为它是一个函数的所有部分,该函数根据提取的所有信息创建多维字典,然后将其写入 csv 文件。

如果有任何提示或建议可以提高此代码的效率,我将不胜感激。

编辑 我更正了代码,以便它准确地考虑目标词前后的 10 个词

最佳答案

我的想法是在 10 行之前创建一个缓冲区来存储,在 10 行之后创建一个缓冲区来存储,作为正在读取的文件,它将被插入缓冲区之前,如果大小超过 10,缓冲区将被弹出

对于后缓冲区,我从文件迭代器 1st 克隆了另一个迭代器。然后在循环中并行运行两个迭代器,克隆迭代器提前运行 10 次迭代以获得后 10 行。

这避免了使用 readlines() 并将整个文件加载到内存中。希望在实际案例中对你有用

已编辑:如果第 3 列不包含“&”、“\”、“(未知)”中的任何一个,则仅填充前后缓冲区。还将 split('\t') 更改为 split() 以便它处理所有空格或选项卡

import itertools
def get_co_occurence(path_file_dir, targets, results):
excluded_words = ['&', '\\', '(unknown)'] # modify excluded words here
for file in os.listdir(path_file_dir):
if file.startswith('testset'):
path_file = os.path.join(path_file_dir, file)
with open(path_file) as corpusfile:
# CHANGED CODE HERE
before_buf = [] # buffer to store before 10 lines
after_buf = [] # buffer to store after 10 lines
corpusfile, corpusfile_clone = itertools.tee(corpusfile) # clone file iterator to access next 10 lines
for line in corpusfile:
line = line.strip()
if re.match('[A-Z]|[a-z]', line):
parts = line.split()
lemma = parts[2]

# before buffer handling, fill buffer excluded line contains any of excluded words
if not any(w in line for w in excluded_words):
before_buf.append(line) # append to before buffer
if len(before_buf)>11:
before_buf.pop(0) # keep the buffer at size 10
# next buffer handling
while len(after_buf)<=10:
try:
after = next(corpusfile_clone) # advance 1 iterator
after_lemma = ''
after_tmp = after.split()
if re.match('[A-Z]|[a-z]', after) and len(after_tmp)>2:
after_lemma = after_tmp[2]
except StopIteration:
break # copy iterator will exhaust 1st coz its 10 iteration ahead
if after_lemma and not any(w in after for w in excluded_words):
after_buf.append(after) # append to buffer
# print 'after',z,after, ' - ',after_lemma
if (after_buf and line in after_buf[0]):
after_buf.pop(0) # pop off one ready for next

if lemma in targets:
pos = parts[1]
if pos not in targets[lemma]:
targets[lemma][pos] = {}
counts = targets[lemma][pos]
# context = []
# look at 10 previous lines
context= before_buf[:-1] # minus out current line
# look at the next 10 lines
context.extend(after_buf)

# END OF CHANGED CODE
# CONTINUE YOUR STUFF HERE WITH CONTEXT

关于python - 通过 readlines(size) 提高大文件搜索的效率,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/40545045/

28 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com