- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我想将我的 _model_fn
for Estimator
变成多 GPU 解决方案。
有没有办法在 Esitmator API 中执行此操作,或者我是否必须明确编码设备放置和同步。
我知道我可以使用 tf.device('gpu:X')
将我的模型放在 GPU X
上。我还知道我可以遍历可用的 GPU 名称来跨多个 GPU 复制我的模型。我还知道我可以为多个 GPU 使用单个输入队列。
我不知道哪些部分(优化器、损失计算)实际上可以转移到 GPU 以及我必须在哪里同步计算。
根据 Cifar10
示例,我认为我只需要同步梯度。
特别是在使用的时候
train_op = tf.contrib.layers.optimize_loss(
loss=loss,
global_step=tf.contrib.framework.get_global_step(),
learning_rate=learning_rate,
learning_rate_decay_fn=_learning_rate_decay_fn,
optimizer=optimizer)
我不能再手动调用 optimizer.compute_gradients()
或 optimizer.apply_gradients()
,因为这是由 .optimize_loss(..)
内部处理的
我想知道如何像在 cifar10 示例 Cifar10-MultiGPU 中那样平均梯度,或者这是否是 Estimator
的正确方法。
最佳答案
实际上,您可以像以前一样在 model_fn 函数中实现多 GPU。
您可以在 here 中找到完整代码.它支持多线程队列读取器和多 GPU,以便在使用估算器时进行非常高速的训练。
代码片段:(GET FULL CODE)
def model_fn(features, labels, mode, params):
# network
network_fn = nets_factory.get_network_fn(
FLAGS.model_name,
num_classes=params['num_classes'],
weight_decay=0.00004,
is_training=(mode == tf.estimator.ModeKeys.TRAIN))
# if predict. Provide an estimator spec for `ModeKeys.PREDICT`.
if mode == tf.estimator.ModeKeys.PREDICT:
logits, end_points = network_fn(features)
return tf.estimator.EstimatorSpec(mode=mode, predictions={"output": logits})
# Create global_step and lr
global_step = tf.train.get_global_step()
learning_rate = get_learning_rate("exponential", FLAGS.base_lr,
global_step, decay_steps=10000)
# Create optimizer
optimizer = get_optimizer(FLAGS.optimizer, learning_rate)
# Multi GPU support - need to make sure that the splits sum up to
# the batch size (in case the batch size is not divisible by
# the number of gpus. This code will put remaining samples in the
# last gpu. E.g. for a batch size of 15 with 2 gpus, the splits
# will be [7, 8].
batch_size = tf.shape(features)[0]
split_size = batch_size // len(params['gpus_list'])
splits = [split_size, ] * (len(params['gpus_list']) - 1)
splits.append(batch_size - split_size * (len(params['gpus_list']) - 1))
# Split the features and labels
features_split = tf.split(features, splits, axis=0)
labels_split = tf.split(labels, splits, axis=0)
tower_grads = []
eval_logits = []
with tf.variable_scope(tf.get_variable_scope()):
for i in xrange(len(params['gpus_list'])):
with tf.device('/gpu:%d' % i):
with tf.name_scope('%s_%d' % ("classification", i)) as scope:
# model and loss
logits, end_points = network_fn(features_split[i])
tf.losses.softmax_cross_entropy(labels_split[i], logits)
update_ops = tf.get_collection(
tf.GraphKeys.UPDATE_OPS, scope)
updates_op = tf.group(*update_ops)
with tf.control_dependencies([updates_op]):
losses = tf.get_collection(tf.GraphKeys.LOSSES, scope)
total_loss = tf.add_n(losses, name='total_loss')
# reuse var
tf.get_variable_scope().reuse_variables()
# grad compute
grads = optimizer.compute_gradients(total_loss)
tower_grads.append(grads)
# for eval metric ops
eval_logits.append(logits)
# We must calculate the mean of each gradient. Note that this is the
# synchronization point across all towers.
grads = average_gradients(tower_grads)
# Apply the gradients to adjust the shared variables.
apply_gradient_op = optimizer.apply_gradients(
grads, global_step=global_step)
# Track the moving averages of all trainable variables.
variable_averages = tf.train.ExponentialMovingAverage(0.9999, global_step)
variables_averages_op = variable_averages.apply(tf.trainable_variables())
# Group all updates to into a single train op.
train_op = tf.group(apply_gradient_op, variables_averages_op)
# Create eval metric ops
_predictions = tf.argmax(tf.concat(eval_logits, 0), 1)
_labels = tf.argmax(labels, 1)
eval_metric_ops = {
"acc": slim.metrics.streaming_accuracy(_predictions, _labels)}
# Provide an estimator spec for `ModeKeys.EVAL` and `ModeKeys.TRAIN` modes.
return tf.estimator.EstimatorSpec(
mode=mode,
loss=total_loss,
train_op=train_op,
eval_metric_ops=eval_metric_ops)
关于python - 多 GPU/Tower 设置 Tensorflow 1.2 Estimator,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/44922844/
我想将模型及其各自训练的权重从 tensorflow.js 转换为标准 tensorflow,但无法弄清楚如何做到这一点,tensorflow.js 的文档对此没有任何说明 我有一个 manifest
我有一个运行良好的 TF 模型,它是用 Python 和 TFlearn 构建的。有没有办法在另一个系统上运行这个模型而不安装 Tensorflow?它已经经过预训练,所以我只需要通过它运行数据。 我
当执行 tensorflow_model_server 二进制文件时,它需要一个模型名称命令行参数,model_name。 如何在训练期间指定模型名称,以便在运行 tensorflow_model_s
我一直在 R 中使用标准包进行生存分析。我知道如何在 TensorFlow 中处理分类问题,例如逻辑回归,但我很难将其映射到生存分析问题。在某种程度上,您有两个输出向量而不是一个输出向量(time_t
Torch7 has a library for generating Gaussian Kernels在一个固定的支持。 Tensorflow 中有什么可比的吗?我看到 these distribu
在Keras中我们可以简单的添加回调,如下所示: self.model.fit(X_train,y_train,callbacks=[Custom_callback]) 回调在doc中定义,但我找不到
我正在寻找一种在 tensorflow 中有条件打印节点的方法,使用下面的示例代码行,其中每 10 个循环计数,它应该在控制台中打印一些东西。但这对我不起作用。谁能建议? 谢谢,哈米德雷萨, epsi
我想使用 tensorflow object detection API 创建我自己的 .tfrecord 文件,并将它们用于训练。该记录将是原始数据集的子集,因此模型将仅检测特定类别。我不明白也无法
我在 TensorFlow 中训练了一个聊天机器人,想保存模型以便使用 TensorFlow.js 将其部署到 Web。我有以下内容 checkpoint = "./chatbot_weights.c
我最近开始学习 Tensorflow,特别是我想使用卷积神经网络进行图像分类。我一直在看官方仓库中的android demo,特别是这个例子:https://github.com/tensorflow
我目前正在研究单图像超分辨率,并且我设法卡住了现有的检查点文件并将其转换为 tensorflow lite。但是,使用 .tflite 文件执行推理时,对一张图像进行上采样所需的时间至少是使用 .ck
我注意到 tensorflow 的 api 中已经有批量标准化函数。我不明白的一件事是如何更改训练和测试之间的程序? 批量归一化在测试和训练期间的作用不同。具体来说,在训练期间使用固定的均值和方差。
我创建了一个模型,该模型将 Mobilenet V2 应用于 Google colab 中的卷积基础层。然后我使用这个命令转换它: path_to_h5 = working_dir + '/Tenso
代码取自:- http://adventuresinmachinelearning.com/python-tensorflow-tutorial/ import tensorflow as tf fr
好了,所以我准备在Tensorflow中运行 tf.nn.softmax_cross_entropy_with_logits() 函数。 据我了解,“logit”应该是概率的张量,每个对应于某个像素的
tensorflow 服务构建依赖于大型 tensorflow ;但我已经成功构建了 tensorflow。所以我想用它。我做这些事情:我更改了 tensorflow 服务 WORKSPACE(org
Tensoflow 嵌入层 ( https://www.tensorflow.org/api_docs/python/tf/keras/layers/Embedding ) 易于使用, 并且有大量的文
我正在尝试使用非常大的数据集(比我的内存大得多)训练 Tensorflow 模型。 为了充分利用所有可用的训练数据,我正在考虑将它们分成几个小的“分片”,并一次在一个分片上进行训练。 经过一番研究,我
根据 Sutton 的书 - Reinforcement Learning: An Introduction,网络权重的更新方程为: 其中 et 是资格轨迹。 这类似于带有额外 et 的梯度下降更新。
如何根据条件选择执行图表的一部分? 我的网络有一部分只有在 feed_dict 中提供占位符值时才会执行.如果未提供该值,则采用备用路径。我该如何使用 tensorflow 来实现它? 以下是我的代码
我是一名优秀的程序员,十分优秀!