gpt4 book ai didi

python - 帮助我在 Python 中实现反向传播

转载 作者:太空狗 更新时间:2023-10-29 21:51:06 26 4
gpt4 key购买 nike

编辑2:

新训练集...

输入:

[
[0.0, 0.0],
[0.0, 1.0],
[0.0, 2.0],
[0.0, 3.0],
[0.0, 4.0],
[1.0, 0.0],
[1.0, 1.0],
[1.0, 2.0],
[1.0, 3.0],
[1.0, 4.0],
[2.0, 0.0],
[2.0, 1.0],
[2.0, 2.0],
[2.0, 3.0],
[2.0, 4.0],
[3.0, 0.0],
[3.0, 1.0],
[3.0, 2.0],
[3.0, 3.0],
[3.0, 4.0],
[4.0, 0.0],
[4.0, 1.0],
[4.0, 2.0],
[4.0, 3.0],
[4.0, 4.0]
]

输出:

[
[0.0],
[0.0],
[0.0],
[0.0],
[0.0],
[0.0],
[0.0],
[0.0],
[0.0],
[0.0],
[0.0],
[0.0],
[0.0],
[0.0],
[0.0],
[0.0],
[0.0],
[0.0],
[1.0],
[1.0],
[0.0],
[0.0],
[0.0],
[1.0],
[1.0]
]

编辑1:

我已经用我的最新代码更新了问题。我修复了一些小问题,但在网络学习后,我仍然为所有输入组合获得相同的输出。

这里是反向传播算法的解释:Backprop algorithm


是的,这是一项作业,要在一开始就明确这一点。

我应该在一个简单的神经网络上实现一个简单的反向传播算法。

我选择 Python 作为此任务的首选语言,并且我选择了这样的神经网络:

3层:1个输入层,1个隐藏层,1个输出层:

O         O

O

O O

在输入神经元上都有一个整数,在输出神经元上有 1 或 0。

这是我的整个实现(有点长)。在下面,我将选择较短的相关片段,我认为错误可能位于:

import os
import math
import Image
import random
from random import sample

#------------------------------ class definitions

class Weight:
def __init__(self, fromNeuron, toNeuron):
self.value = random.uniform(-0.5, 0.5)
self.fromNeuron = fromNeuron
self.toNeuron = toNeuron
fromNeuron.outputWeights.append(self)
toNeuron.inputWeights.append(self)
self.delta = 0.0 # delta value, this will accumulate and after each training cycle used to adjust the weight value

def calculateDelta(self, network):
self.delta += self.fromNeuron.value * self.toNeuron.error

class Neuron:
def __init__(self):
self.value = 0.0 # the output
self.idealValue = 0.0 # the ideal output
self.error = 0.0 # error between output and ideal output
self.inputWeights = []
self.outputWeights = []

def activate(self, network):
x = 0.0;
for weight in self.inputWeights:
x += weight.value * weight.fromNeuron.value
# sigmoid function
if x < -320:
self.value = 0
elif x > 320:
self.value = 1
else:
self.value = 1 / (1 + math.exp(-x))

class Layer:
def __init__(self, neurons):
self.neurons = neurons

def activate(self, network):
for neuron in self.neurons:
neuron.activate(network)

class Network:
def __init__(self, layers, learningRate):
self.layers = layers
self.learningRate = learningRate # the rate at which the network learns
self.weights = []
for hiddenNeuron in self.layers[1].neurons:
for inputNeuron in self.layers[0].neurons:
self.weights.append(Weight(inputNeuron, hiddenNeuron))
for outputNeuron in self.layers[2].neurons:
self.weights.append(Weight(hiddenNeuron, outputNeuron))

def setInputs(self, inputs):
self.layers[0].neurons[0].value = float(inputs[0])
self.layers[0].neurons[1].value = float(inputs[1])

def setExpectedOutputs(self, expectedOutputs):
self.layers[2].neurons[0].idealValue = expectedOutputs[0]

def calculateOutputs(self, expectedOutputs):
self.setExpectedOutputs(expectedOutputs)
self.layers[1].activate(self) # activation function for hidden layer
self.layers[2].activate(self) # activation function for output layer

def calculateOutputErrors(self):
for neuron in self.layers[2].neurons:
neuron.error = (neuron.idealValue - neuron.value) * neuron.value * (1 - neuron.value)

def calculateHiddenErrors(self):
for neuron in self.layers[1].neurons:
error = 0.0
for weight in neuron.outputWeights:
error += weight.toNeuron.error * weight.value
neuron.error = error * neuron.value * (1 - neuron.value)

def calculateDeltas(self):
for weight in self.weights:
weight.calculateDelta(self)

def train(self, inputs, expectedOutputs):
self.setInputs(inputs)
self.calculateOutputs(expectedOutputs)
self.calculateOutputErrors()
self.calculateHiddenErrors()
self.calculateDeltas()

def learn(self):
for weight in self.weights:
weight.value += self.learningRate * weight.delta

def calculateSingleOutput(self, inputs):
self.setInputs(inputs)
self.layers[1].activate(self)
self.layers[2].activate(self)
#return round(self.layers[2].neurons[0].value, 0)
return self.layers[2].neurons[0].value


#------------------------------ initialize objects etc


inputLayer = Layer([Neuron() for n in range(2)])
hiddenLayer = Layer([Neuron() for n in range(100)])
outputLayer = Layer([Neuron() for n in range(1)])

learningRate = 0.5

network = Network([inputLayer, hiddenLayer, outputLayer], learningRate)

# just for debugging, the real training set is much larger
trainingInputs = [
[0.0, 0.0],
[1.0, 0.0],
[2.0, 0.0],
[0.0, 1.0],
[1.0, 1.0],
[2.0, 1.0],
[0.0, 2.0],
[1.0, 2.0],
[2.0, 2.0]
]
trainingOutputs = [
[0.0],
[1.0],
[1.0],
[0.0],
[1.0],
[0.0],
[0.0],
[0.0],
[1.0]
]

#------------------------------ let's train

for i in range(500):
for j in range(len(trainingOutputs)):
network.train(trainingInputs[j], trainingOutputs[j])
network.learn()

#------------------------------ let's check


for pattern in trainingInputs:
print network.calculateSingleOutput(pattern)

现在的问题是,在学习之后,网络似乎为所有输入组合返回一个非常接近 0.0 的 float ,即使是那些应该接近 1.0 的组合也是如此。

我在 100 个循环中训练网络,在每个循环中我都这样做:

对于训练集中的每组输入:

  • 设置网络输入
  • 使用 sigmoid 函数计算输出
  • 计算输出层的误差
  • 计算隐藏层的误差
  • 计算权重的增量

然后我根据学习率和累积增量调整权重。

这是我的神经元激活函数:

def activationFunction(self, network):
"""
Calculate an activation function of a neuron which is a sum of all input weights * neurons where those weights start
"""
x = 0.0;
for weight in self.inputWeights:
x += weight.value * weight.getFromNeuron(network).value
# sigmoid function
self.value = 1 / (1 + math.exp(-x))

这是我计算增量的方式:

def calculateDelta(self, network):
self.delta += self.getFromNeuron(network).value * self.getToNeuron(network).error

这是我的算法的一般流程:

for i in range(numberOfIterations):
for k,expectedOutput in trainingSet.iteritems():
coordinates = k.split(",")
network.setInputs((float(coordinates[0]), float(coordinates[1])))
network.calculateOutputs([float(expectedOutput)])
network.calculateOutputErrors()
network.calculateHiddenErrors()
network.calculateDeltas()
oldWeights = network.weights
network.adjustWeights()
network.resetDeltas()
print "Iteration ", i
j = 0
for weight in network.weights:
print "Weight W", weight.i, weight.j, ": ", oldWeights[j].value, " ............ Adjusted value : ", weight.value
j += j

输出的最后两行是:

0.552785449458 # this should be close to 1
0.552785449458 # this should be close to 0

它实际上返回所有输入组合的输出数字。

我错过了什么吗?

最佳答案

看起来你得到的几乎是神经元的初始状态(接近self.idealValue)。也许您不应该在提供实际数据之前初始化此神经元?

编辑:好的,我仔细查看了代码并稍微简化了它(将在下面发布简化版本)。基本上您的代码有两个小错误(看起来像是您刚刚忽略的事情),但这会导致网络肯定无法正常工作。

  • 你在学习阶段忘记设置输出层的expectedOutput值。没有它,网络肯定无法学习任何东西,并且将始终停留在初始理想值上。 (这是我在第一次阅读时发现的行为)。这个甚至可以在你对训练步骤的描述中发现(如果你没有发布代码可能会发现,这是我知道实际发布代码隐藏错误而不是制造错误的罕见情况之一明显的)。您在 EDIT1 之后修复了这个问题。
  • 在 calculateSingleOutputs 中激活网络时,您忘记激活隐藏层。

显然,这两个问题中的任何一个都会导致功能失调的网络。

一旦更正,它就可以工作(好吧,它在我的简化版代码中工作)。

错误不容易发现,因为初始代码太复杂了。在引入新类或新方法之前,您应该三思而后行。没有创建足够的方法或类会使代码难以阅读和维护,但创建太多可能会使代码更难阅读和维护。你必须找到合适的平衡点。我个人找到这种平衡的方法是遵循 code smells和重构技术,无论它们引导我到哪里。有时添加方法或创建类,有时删除它们。它当然不完美,但这对我有用。

以下是应用一些重构后我的代码版本。我花了大约一个小时更改您的代码,但始终保持其功能相同。我认为这是一个很好的重构练习,因为最初的代码读起来真的很糟糕。重构后,只用了 5 分钟就发现了问题。

import os
import math

"""
A simple backprop neural network. It has 3 layers:
Input layer: 2 neurons
Hidden layer: 2 neurons
Output layer: 1 neuron
"""

class Weight:
"""
Class representing a weight between two neurons
"""
def __init__(self, value, from_neuron, to_neuron):
self.value = value
self.from_neuron = from_neuron
from_neuron.outputWeights.append(self)
self.to_neuron = to_neuron
to_neuron.inputWeights.append(self)

# delta value, this will accumulate and after each training cycle
# will be used to adjust the weight value
self.delta = 0.0

class Neuron:
"""
Class representing a neuron.
"""
def __init__(self):
self.value = 0.0 # the output
self.idealValue = 0.0 # the ideal output
self.error = 0.0 # error between output and ideal output
self.inputWeights = [] # weights that end in the neuron
self.outputWeights = [] # weights that starts in the neuron

def activate(self):
"""
Calculate an activation function of a neuron which is
a sum of all input weights * neurons where those weights start
"""
x = 0.0;
for weight in self.inputWeights:
x += weight.value * weight.from_neuron.value
# sigmoid function
self.value = 1 / (1 + math.exp(-x))

class Network:
"""
Class representing a whole neural network. Contains layers.
"""
def __init__(self, layers, learningRate, weights):
self.layers = layers
self.learningRate = learningRate # the rate at which the network learns
self.weights = weights

def training(self, entries, expectedOutput):
for i in range(len(entries)):
self.layers[0][i].value = entries[i]
for i in range(len(expectedOutput)):
self.layers[2][i].idealValue = expectedOutput[i]
for layer in self.layers[1:]:
for n in layer:
n.activate()
for n in self.layers[2]:
error = (n.idealValue - n.value) * n.value * (1 - n.value)
n.error = error
for n in self.layers[1]:
error = 0.0
for w in n.outputWeights:
error += w.to_neuron.error * w.value
n.error = error
for w in self.weights:
w.delta += w.from_neuron.value * w.to_neuron.error

def updateWeights(self):
for w in self.weights:
w.value += self.learningRate * w.delta

def calculateSingleOutput(self, entries):
"""
Calculate a single output for input values.
This will be used to debug the already learned network after training.
"""
for i in range(len(entries)):
self.layers[0][i].value = entries[i]
# activation function for output layer
for layer in self.layers[1:]:
for n in layer:
n.activate()
print self.layers[2][0].value


#------------------------------ initialize objects etc

neurons = [Neuron() for n in range(5)]

w1 = Weight(-0.79, neurons[0], neurons[2])
w2 = Weight( 0.51, neurons[0], neurons[3])
w3 = Weight( 0.27, neurons[1], neurons[2])
w4 = Weight(-0.48, neurons[1], neurons[3])
w5 = Weight(-0.33, neurons[2], neurons[4])
w6 = Weight( 0.09, neurons[3], neurons[4])

weights = [w1, w2, w3, w4, w5, w6]
inputLayer = [neurons[0], neurons[1]]
hiddenLayer = [neurons[2], neurons[3]]
outputLayer = [neurons[4]]
learningRate = 0.3
network = Network([inputLayer, hiddenLayer, outputLayer], learningRate, weights)

# just for debugging, the real training set is much larger
trainingSet = [([0.0,0.0],[0.0]),
([1.0,0.0],[1.0]),
([2.0,0.0],[1.0]),
([0.0,1.0],[0.0]),
([1.0,1.0],[1.0]),
([2.0,1.0],[0.0]),
([0.0,2.0],[0.0]),
([1.0,2.0],[0.0]),
([2.0,2.0],[1.0])]

#------------------------------ let's train
for i in range(100): # training iterations
for entries, expectedOutput in trainingSet:
network.training(entries, expectedOutput)
network.updateWeights()

#network has learned, let's check
network.calculateSingleOutput((1, 0)) # this should be close to 1
network.calculateSingleOutput((0, 0)) # this should be close to 0

顺便说一句,还有第三个问题我没有改正(但很容易改正)。如果 x 太大或太小(> 320 或 < -320)math.exp() 将引发异常。如果您申请训练迭代,比如几千次,就会发生这种情况。我看到最简单的纠正方法是检查 x 的值,如果它太大或太小,则根据情况将 Neuron 的值设置为 0 或 1,这是极限值。

关于python - 帮助我在 Python 中实现反向传播,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/3988238/

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com