gpt4 book ai didi

python - OpenCV 人脸检测在 Raspberry Pi 上很慢

转载 作者:太空狗 更新时间:2023-10-29 21:50:31 24 4
gpt4 key购买 nike

我正在使用 OpenCV 和 Python 编码测试 Raspberry Pi。视频流传输效果很好(中等速度),但是当我在流上运行人脸检测时,CPU 被锁定并且刷新图像很慢。

这是我的。如何优化我的代码?

#!/usr/bin/env python
import sys
import cv2.cv as cv
from optparse import OptionParser
min_size = (20, 20)
image_scale = 2
haar_scale = 1.2
min_neighbors = 2
haar_flags = 0

def detect_and_draw(img, cascade):
# allocate temporary images
gray = cv.CreateImage((img.width,img.height), 8, 1)
small_img = cv.CreateImage((cv.Round(img.width / image_scale),
cv.Round (img.height / image_scale)), 8, 1)
cv.Round (img.height / image_scale)), 8, 1)

# convert color input image to grayscale
cv.CvtColor(img, gray, cv.CV_BGR2GRAY)

# scale input image for faster processing
cv.Resize(gray, small_img, cv.CV_INTER_LINEAR)

cv.EqualizeHist(small_img, small_img)

if(cascade):
t = cv.GetTickCount()
faces = cv.HaarDetectObjects(small_img, cascade, cv.CreateMemStorage(0),
haar_scale, min_neighbors, haar_flags, min_size)
t = cv.GetTickCount() - t
print "detection time = %gms" % (t/(cv.GetTickFrequency()*1000.))
if faces:
for ((x, y, w, h), n) in faces:
# the input to cv.HaarDetectObjects was resized, so scale the
# bounding box of each face and convert it to two CvPoints
pt1 = (int(x * image_scale), int(y * image_scale))
# bounding box of each face and convert it to two CvPoints
pt1 = (int(x * image_scale), int(y * image_scale))
pt2 = (int((x + w) * image_scale), int((y + h) * image_scale))
cv.Rectangle(img, pt1, pt2, cv.RGB(255, 0, 0), 3, 8, 0)

cv.ShowImage("result", img)

if __name__ == '__main__':

parser = OptionParser(usage = "usage: %prog [options] [camera_index]")
parser.add_option("-c", "--cascade", action="store", dest="cascade", type="str", help="Haar cascade file, default %default", default = "/usr/local/share/OpenCV/haarcascades")
(options, args) = parser.parse_args()

cascade = cv.Load(options.cascade)
capture = cv.CreateCameraCapture(0)
cv.NamedWindow("result", 1)

if capture:
frame_copy = None
while True:
frame = cv.QueryFrame(capture)
if not frame:
cv.WaitKey(0)
break
if not frame_copy:
frame_copy = cv.CreateImage((frame.width,frame.height),
cv.IPL_DEPTH_8U, frame.nChannels)
if frame.origin == cv.IPL_ORIGIN_TL:
cv.Copy(frame, frame_copy)
else:
cv.Copy(frame, frame_copy)
else:
cv.Flip(frame, frame_copy, 0)

detect_and_draw(frame_copy, cascade)

if cv.WaitKey(10) != -1:
break
else:
image = cv.LoadImage(input_name, 1)
detect_and_draw(image, cascade)
cv.WaitKey(0)

cv.DestroyWindow("result")

最佳答案

我可以建议您使用 LBP 级联而不是 Haar。众所周知,它的检测速度非常接近,速度提高了 6 倍。

但我不确定它是否可以在旧版 python 界面中访问。新包装器中的 cv2.CascadeClassifier 类可以检测 LBP 级联。

关于python - OpenCV 人脸检测在 Raspberry Pi 上很慢,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/12860243/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com