- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我需要帮助来转换我的数据,以便我可以通读交易数据。
商业案例
我正在尝试将一些相关交易组合在一起,以创建一些事件组或事件类别。该数据集代表因各种请假事件外出的员工。我想根据休假事件类 365 天内的任何交易创建一类休假。对于图表趋势,我想对类进行编号,以便获得序列/模式。
我的代码允许我查看第一个事件发生的时间,并且它可以识别新类何时开始,但它不会将每个事务都放入一个类中。
要求:
我为所需输出添加了一列,标记为“所需输出”。请注意,每个人可以有更多的行/事件;并且可以有更多的人。
一些数据
import pandas as pd
data = {'Employee ID': ["100", "100", "100","100","200","200","200","300"],
'Effective Date': ["2016-01-01","2015-06-05","2014-07-01","2013-01-01","2016-01-01","2015-01-01","2013-01-01","2014-01"],
'Desired Output': ["Unique Leave Event 2","Unique Leave Event 2","Unique Leave Event 2","Unique Leave Event 1","Unique Leave Event 2","Unique Leave Event 2","Unique Leave Event 1","Unique Leave Event 1"]}
df = pd.DataFrame(data, columns=['Employee ID','Effective Date','Desired Output'])
我试过的一些代码
df['Effective Date'] = df['Effective Date'].astype('datetime64[ns]')
df['EmplidShift'] = df['Employee ID'].shift(-1)
df['Effdt-Shift'] = df['Effective Date'].shift(-1)
df['Prior Row in Same Emplid Class'] = "No"
df['Effdt Diff'] = df['Effdt-Shift'] - df['Effective Date']
df['Effdt Diff'] = (pd.to_timedelta(df['Effdt Diff'], unit='d') + pd.to_timedelta(1,unit='s')).astype('timedelta64[D]')
df['Cumul. Count'] = df.groupby('Employee ID').cumcount()
df['Groupby'] = df.groupby('Employee ID')['Cumul. Count'].transform('max')
df['First Row Appears?'] = ""
df['First Row Appears?'][df['Cumul. Count'] == df['Groupby']] = "First Row"
df['Prior Row in Same Emplid Class'][ df['Employee ID'] == df['EmplidShift']] = "Yes"
df['Prior Row in Same Emplid Class'][ df['Employee ID'] == df['EmplidShift']] = "Yes"
df['Effdt > 1 Yr?'] = ""
df['Effdt > 1 Yr?'][ ((df['Prior Row in Same Emplid Class'] == "Yes" ) & (df['Effdt Diff'] < -365)) ] = "Yes"
df['Unique Leave Event'] = ""
df['Unique Leave Event'][ (df['Effdt > 1 Yr?'] == "Yes") | (df['First Row Appears?'] == "First Row") ] = "Unique Leave Event"
df
最佳答案
您无需循环或迭代数据框即可执行此操作。每Wes McKinney您可以将 .apply()
与 groupBy 对象一起使用,并定义一个函数以应用于 groupby 对象。如果将它与 .shift()
( like here ) 一起使用,您无需使用任何循环即可获得结果。
简洁示例:
# Group by Employee ID
grouped = df.groupby("Employee ID")
# Define function
def get_unique_events(group):
# Convert to date and sort by date, like @Khris did
group["Effective Date"] = pd.to_datetime(group["Effective Date"])
group = group.sort_values("Effective Date")
event_series = (group["Effective Date"] - group["Effective Date"].shift(1) > pd.Timedelta('365 days')).apply(lambda x: int(x)).cumsum()+1
return event_series
event_df = pd.DataFrame(grouped.apply(get_unique_events).rename("Unique Event")).reset_index(level=0)
df = pd.merge(df, event_df[['Unique Event']], left_index=True, right_index=True)
df['Output'] = df['Unique Event'].apply(lambda x: "Unique Leave Event " + str(x))
df['Match'] = df['Desired Output'] == df['Output']
print(df)
输出:
Employee ID Effective Date Desired Output Unique Event \
3 100 2013-01-01 Unique Leave Event 1 1
2 100 2014-07-01 Unique Leave Event 2 2
1 100 2015-06-05 Unique Leave Event 2 2
0 100 2016-01-01 Unique Leave Event 2 2
6 200 2013-01-01 Unique Leave Event 1 1
5 200 2015-01-01 Unique Leave Event 2 2
4 200 2016-01-01 Unique Leave Event 2 2
7 300 2014-01 Unique Leave Event 1 1
Output Match
3 Unique Leave Event 1 True
2 Unique Leave Event 2 True
1 Unique Leave Event 2 True
0 Unique Leave Event 2 True
6 Unique Leave Event 1 True
5 Unique Leave Event 2 True
4 Unique Leave Event 2 True
7 Unique Leave Event 1 True
为清楚起见,更详细的示例:
import pandas as pd
data = {'Employee ID': ["100", "100", "100","100","200","200","200","300"],
'Effective Date': ["2016-01-01","2015-06-05","2014-07-01","2013-01-01","2016-01-01","2015-01-01","2013-01-01","2014-01"],
'Desired Output': ["Unique Leave Event 2","Unique Leave Event 2","Unique Leave Event 2","Unique Leave Event 1","Unique Leave Event 2","Unique Leave Event 2","Unique Leave Event 1","Unique Leave Event 1"]}
df = pd.DataFrame(data, columns=['Employee ID','Effective Date','Desired Output'])
# Group by Employee ID
grouped = df.groupby("Employee ID")
# Define a function to get the unique events
def get_unique_events(group):
# Convert to date and sort by date, like @Khris did
group["Effective Date"] = pd.to_datetime(group["Effective Date"])
group = group.sort_values("Effective Date")
# Define a series of booleans to determine whether the time between dates is over 365 days
# Use .shift(1) to look back one row
is_year = group["Effective Date"] - group["Effective Date"].shift(1) > pd.Timedelta('365 days')
# Convert booleans to integers (0 for False, 1 for True)
is_year_int = is_year.apply(lambda x: int(x))
# Use the cumulative sum function in pandas to get the cumulative adjustment from the first date.
# Add one to start the first event as 1 instead of 0
event_series = is_year_int.cumsum() + 1
return event_series
# Run function on df and put results into a new dataframe
# Convert Employee ID back from an index to a column with .reset_index(level=0)
event_df = pd.DataFrame(grouped.apply(get_unique_events).rename("Unique Event")).reset_index(level=0)
# Merge the dataframes
df = pd.merge(df, event_df[['Unique Event']], left_index=True, right_index=True)
# Add string to match desired format
df['Output'] = df['Unique Event'].apply(lambda x: "Unique Leave Event " + str(x))
# Check to see if output matches desired output
df['Match'] = df['Desired Output'] == df['Output']
print(df)
你得到相同的输出:
Employee ID Effective Date Desired Output Unique Event \
3 100 2013-01-01 Unique Leave Event 1 1
2 100 2014-07-01 Unique Leave Event 2 2
1 100 2015-06-05 Unique Leave Event 2 2
0 100 2016-01-01 Unique Leave Event 2 2
6 200 2013-01-01 Unique Leave Event 1 1
5 200 2015-01-01 Unique Leave Event 2 2
4 200 2016-01-01 Unique Leave Event 2 2
7 300 2014-01 Unique Leave Event 1 1
Output Match
3 Unique Leave Event 1 True
2 Unique Leave Event 2 True
1 Unique Leave Event 2 True
0 Unique Leave Event 2 True
6 Unique Leave Event 1 True
5 Unique Leave Event 2 True
4 Unique Leave Event 2 True
7 Unique Leave Event 1 True
关于python - 根据列中的条件创建组/类,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/39712602/
我正在努力处理查询的 WHERE 部分。查询本身包含一个基于两个表中都存在的 ID 的 LEFT JOIN。但是,我要求 where 语句仅返回其中一列中存在的最大单个结果。目前我返回连接中的所有值,
我有这个代码来改变文件系统的大小。问题是,即使满足 if 条件,它也不会进入 if 条件,而我根本没有检查 if 条件。它直接进入 else 条件。 运行代码后的结果 post-install-ray
假设我有一个包含 2 列的 Excel 表格:单元格 A1 到 A10 中的日期和 B1 到 B10 中的值。 我想对五月日期的所有值求和。我有3种可能性: {=SUM((MONTH(A1:A10)=
伪代码: SELECT * FROM 'table' WHERE ('date' row.date 或 ,我们在Stack Overflow上找到一个类似的问题: https://stackove
我有下面这行代码做一个简单的查询 if ($this->fulfilled) $criteria->addCondition('fulfilled ' . (($this->fulfilled
如果在数据库中找到用户输入的键,我将尝试显示“表”中的数据。目前我已将其设置为让数据库检查 key 是否存在,如下所示: //Select all from table if a key entry
关闭。此题需要details or clarity 。目前不接受答案。 想要改进这个问题吗?通过 editing this post 添加详细信息并澄清问题. 已关闭 5 年前。 Improve th
在MYSQL中可以吗 一共有三个表 任务(task_id、task_status、...) tasks_assigned_to(ta_id、task_id、user_id) task_suggeste
我想先根据用户的状态然后根据用户名来排序我的 sql 请求。该状态由 user_type 列设置: 1=活跃,2=不活跃,3=创始人。 我会使用此请求来执行此操作,但它不起作用,因为我想在“活跃”成员
下面两个函数中最专业的代码风格是什么? 如果函数变得更复杂和更大,例如有 20 个检查怎么办? 注意:每次检查后我都需要做一些事情,所以我不能将所有内容连接到一个 if 语句中,例如: if (veh
我在 C# 项目中使用 EntityFramework 6.1.3 和 SQL Server。我有两个查询,基本上应该执行相同的操作。 1. Exams.GroupBy(x=>x.SubjectID)
我试图在 case when 语句中放入两个条件,但我在 postgresql 中遇到语法错误 case when condition 1 and condition 2 then X else Y
我正在构建一个连接多个表的查询,一个表 prodRecipe 将包含某些行的数据,但不是全部,但是 tmp_inv1 将包含所有行的计数信息。问题是,tmp_inv1.count 取决于某个项目是否在
我有一个涉及 couples of rows which have a less-than-2-hours time-difference 的查询(~0.08333 天): SELECT mt1.*,
我有一个包含许多这样的 OR 条件的代码(工作正常)来检查其中一个值是否为空,然后我们抛出一条错误消息(所有这些都必须填写) } elsif ( !$params{'account'}
我有一个名为 spGetOrders 的存储过程,它接受一些参数:@startdate 和 @enddate。这将查询“订单”表。表中的一列称为“ClosedDate”。如果订单尚未关闭,则此列将保留
在代码中,注释部分是我需要解决的问题...有没有办法在 LINQ 中编写这样的查询?我需要这个,因为我需要根据状态进行排序。 var result = ( from contact in d
我正在尝试创建一个允许省略参数的存储过程,但如果提供了参数,则进行 AND 操作: CREATE PROCEDURE MyProcedure @LastName Varchar(30)
我正在寻找一种方法来过滤我的主机文件中的新 IP 地址。我创建了一个脚本,每次我用来自矩阵企业管理器的数据调用它时都会更新我的主机文件。它工作正常。但是我必须找到一个解决方案,只允许更新 10.XX.
所以我正在做一种 slider ,当它完全向下时隐藏向下按钮,反之亦然,当向上按钮隐藏时,我遇到了问题。 var amount = $('slide').attr('number'); $('span
我是一名优秀的程序员,十分优秀!