- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
这是我的数据框
CATEGORY BRAND
0 Noodle Anak Mas
1 Noodle Anak Mas
2 Noodle Indomie
3 Noodle Indomie
4 Noodle Indomie
23 Noodle Indomie
24 Noodle Mi Telor Cap 3
25 Noodle Mi Telor Cap 3
26 Noodle Pop Mie
27 Noodle Pop Mie
...
我已经确定了df类型是string,我的代码是
df = data[['CATEGORY', 'BRAND']].astype(str)
import collections, re
texts = df
bagsofwords = [ collections.Counter(re.findall(r'\w+', txt))
for txt in texts]
sumbags = sum(bagsofwords, collections.Counter())
当我打电话
sumbags
输出是
Counter({'BRAND': 1, 'CATEGORY': 1})
我想要 sumbags 中的所有数据计数,除了标题,以使其清晰可见
Counter({'Noodle': 10, 'Indomie': 4, 'Anak': 2, ....}) # because it is bag of words
我需要每一个字数
最佳答案
IIUIC, 使用
选项 1] Numpy flatten
和 split
In [2535]: collections.Counter([y for x in df.values.flatten() for y in x.split()])
Out[2535]:
Counter({'3': 2,
'Anak': 2,
'Cap': 2,
'Indomie': 4,
'Mas': 2,
'Mi': 2,
'Mie': 2,
'Noodle': 10,
'Pop': 2,
'Telor': 2})
选项 2]使用 value_counts()
In [2536]: pd.Series([y for x in df.values.flatten() for y in x.split()]).value_counts()
Out[2536]:
Noodle 10
Indomie 4
Mie 2
Pop 2
Anak 2
Mi 2
Cap 2
Telor 2
Mas 2
3 2
dtype: int64
选项 3]使用 stack
和 value_counts
In [2582]: df.apply(lambda x: x.str.split(expand=True).stack()).stack().value_counts()
Out[2582]:
Noodle 10
Indomie 4
Mie 2
Pop 2
Anak 2
Mi 2
Cap 2
Telor 2
Mas 2
3 2
dtype: int64
详细信息
In [2516]: df
Out[2516]:
CATEGORY BRAND
0 Noodle Anak Mas
1 Noodle Anak Mas
2 Noodle Indomie
3 Noodle Indomie
4 Noodle Indomie
23 Noodle Indomie
24 Noodle Mi Telor Cap 3
25 Noodle Mi Telor Cap 3
26 Noodle Pop Mie
27 Noodle Pop Mie
关于python - 如何从 pandas 数据框创建词袋,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/46360435/
pandas.crosstab 和 Pandas 数据透视表似乎都提供了完全相同的功能。有什么不同吗? 最佳答案 pivot_table没有 normalize争论,不幸的是。 在 crosstab
我能找到的最接近的答案似乎太复杂:How I can create an interval column in pandas? 如果我有一个如下所示的 pandas 数据框: +-------+ |
这是我用来将某一行的一列值移动到同一行的另一列的当前代码: #Move 2014/15 column ValB to column ValA df.loc[(df.Survey_year == 201
我有一个以下格式的 Pandas 数据框: df = pd.DataFrame({'a' : [0,1,2,3,4,5,6], 'b' : [-0.5, 0.0, 1.0, 1.2, 1.4,
所以我有这两个数据框,我想得到一个新的数据框,它由两个数据框的行的克罗内克积组成。正确的做法是什么? 举个例子:数据框1 c1 c2 0 10 100 1 11 110 2 12
TL;DR:在 pandas 中,如何绘制条形图以使其 x 轴刻度标签看起来像折线图? 我制作了一个间隔均匀的时间序列(每天一个项目),并且可以像这样很好地绘制它: intensity[350:450
我有以下两个时间列,“Time1”和“Time2”。我必须计算 Pandas 中的“差异”列,即 (Time2-Time1): Time1 Time2
从这个 df 去的正确方法是什么: >>> df=pd.DataFrame({'a':['jeff','bob','jill'], 'b':['bob','jeff','mike']}) >>> df
我想按周从 Pandas 框架中的列中累积计算唯一值。例如,假设我有这样的数据: df = pd.DataFrame({'user_id':[1,1,1,2,2,2],'week':[1,1,2,1,
数据透视表的表示形式看起来不像我在寻找的东西,更具体地说,结果行的顺序。 我不知道如何以正确的方式进行更改。 df示例: test_df = pd.DataFrame({'name':['name_1
我有一个数据框,如下所示。 Category Actual Predicted 1 1 1 1 0
我有一个 df,如下所示。 df: ID open_date limit 1 2020-06-03 100 1 2020-06-23 500
我有一个 df ,其中包含与唯一值关联的各种字符串。对于这些唯一值,我想删除不等于单独列表的行,最后一行除外。 下面使用 Label 中的各种字符串值与 Item 相关联.所以对于每个唯一的 Item
考虑以下具有相同名称的列的数据框(显然,这确实发生了,目前我有一个像这样的数据集!:() >>> df = pd.DataFrame({"a":range(10,15),"b":range(5,10)
我在 Pandas 中有一个 DF,它看起来像: Letters Numbers A 1 A 3 A 2 A 1 B 1 B 2
如何减去两列之间的时间并将其转换为分钟 Date Time Ordered Time Delivered 0 1/11/19 9:25:00 am 10:58:00 am
我试图理解 pandas 中的下/上百分位数计算,但有点困惑。这是它的示例代码和输出。 test = pd.Series([7, 15, 36, 39, 40, 41]) test.describe(
我有一个多索引数据框,如下所示: TQ bought HT Detailed Instru
我需要从包含值“低”,“中”或“高”的数据框列创建直方图。当我尝试执行通常的df.column.hist()时,出现以下错误。 ex3.Severity.value_counts() Out[85]:
我试图根据另一列的长度对一列进行子串,但结果集是 NaN .我究竟做错了什么? import pandas as pd df = pd.DataFrame([['abcdefghi','xyz'],
我是一名优秀的程序员,十分优秀!