- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我的目标是在 Python 中为光谱有限元编写一个小型库,为此我尝试使用 Boost 将 Python 扩展为 C++ 库,希望它能让我的代码更快。
class Quad {
public:
Quad(int, int);
double integrate(boost::function<double(std::vector<double> const&)> const&);
double integrate_wrapper(boost::python::object const&);
std::vector< std::vector<double> > nodes;
std::vector<double> weights;
};
...
namespace std {
typedef std::vector< std::vector< std::vector<double> > > cube;
typedef std::vector< std::vector<double> > mat;
typedef std::vector<double> vec;
}
...
double Quad::integrate(boost::function<double(vec const&)> const& func) {
double result = 0.;
for (unsigned int i = 0; i < nodes.size(); ++i) {
result += func(nodes[i]) * weights[i];
}
return result;
}
// ---- PYTHON WRAPPER ----
double Quad::integrate_wrapper(boost::python::object const& func) {
std::function<double(vec const&)> lambda;
switch (this->nodes[0].size()) {
case 1: lambda = [&func](vec const& v) -> double { return boost::python::extract<double>(func (v[0])); }; break;
case 2: lambda = [&func](vec const& v) -> double { return boost::python::extract<double>(func(v[0], v[1])); }; break;
case 3: lambda = [&func](vec const& v) -> double { return boost::python::extract<double>(func(v[0], v[1], v[2])); }; break;
default: cout << "Dimension must be 1, 2, or 3" << endl; exit(0);
}
return integrate(lambda);
}
// ---- EXPOSE TO PYTHON ----
BOOST_PYTHON_MODULE(hermite)
{
using namespace boost::python;
class_<std::vec>("double_vector")
.def(vector_indexing_suite<std::vec>())
;
class_<std::mat>("double_mat")
.def(vector_indexing_suite<std::mat>())
;
class_<Quad>("Quad", init<int,int>())
.def("integrate", &Quad::integrate_wrapper)
.def_readonly("nodes", &Quad::nodes)
.def_readonly("weights", &Quad::weights)
;
}
我比较了三种不同方法的性能来计算两个函数的积分。这两个函数是:
f1(x,y,z) = x*x
f2(x,y,z) = np.cos(2*x+2*y+2*z) + x*y + np.exp(- z*z) +np.cos(2*x+2*y+2*z) + x*y + np.exp(-z*z) +np.cos(2*x+2*y+2* z) + x*y + np.exp(-z*z) +np.cos(2*x+2*y+2*z) + x*y + np.exp(-z*z) +np。 cos(2*x+2*y+2*z) + x*y + np.exp(-z*z)
使用的方法是:
从 C++ 程序调用库:
double func(vector<double> v) {
return F1_OR_F2;
}
int main() {
hermite::Quad quadrature(100, 3);
double result = quadrature.integrate(func);
cout << "Result = " << result << endl;
}
从 Python 脚本调用库:
import hermite
def function(x, y, z): return F1_OR_F2
my_quad = hermite.Quad(100, 3)
result = my_quad.integrate(function)
在 Python 中使用 for
循环:
import hermite
def function(x, y, z): return F1_OR_F2
my_quad = hermite.Quad(100, 3)
weights = my_quad.weights
nodes = my_quad.nodes
result = 0.
for i in range(len(weights)):
result += weights[i] * function(nodes[i][0], nodes[i][1], nodes[i][2])
这是每个方法的执行时间(方法 1 使用 time
命令测量时间,方法 2 和 3 使用 python 模块 time
, C++ 代码是使用 Cmake 和 set (CMAKE_BUILD_TYPE Release)
)
对于 f1
:
0.07s 用户 0.01s 系统 99% cpu 0.083 总计
对于 f2
:
0.28s 用户 0.01s 系统 99% cpu 0.289 总计
根据这些结果,我的问题如下:
为什么第一种方法比第二种方法快这么多?
是否可以改进 python 包装器以达到方法 1 和方法 2 之间相当的性能?
为什么方法 2 比方法 3 对功能集成的难度更敏感?
编辑:我还尝试定义一个接受字符串作为参数的函数,将其写入文件,然后继续编译文件并动态加载生成的 .so
文件:
double Quad::integrate_from_string(string const& function_body) {
// Write function to file
ofstream helper_file;
helper_file.open("/tmp/helper_function.cpp");
helper_file << "#include <vector>\n#include <cmath>\n";
helper_file << "extern \"C\" double toIntegrate(std::vector<double> v) {\n";
helper_file << " return " << function_body << ";\n}";
helper_file.close();
// Compile file
system("c++ /tmp/helper_function.cpp -o /tmp/helper_function.so -shared -fPIC");
// Load function dynamically
typedef double (*vec_func)(vec);
void *function_so = dlopen("/tmp/helper_function.so", RTLD_NOW);
vec_func func = (vec_func) dlsym(function_so, "toIntegrate");
double result = integrate(func);
dlclose(function_so);
return result;
}
它很脏而且可能不太便携,所以我很乐意找到一个更好的解决方案,但它运行良好并且与 sympy
的 ccode
功能配合得很好>.
第二次编辑 我使用 Numpy 在纯 Python 中重写了函数。
import numpy as np
import numpy.polynomial.hermite_e as herm
import time
def integrate(function, degrees):
dim = len(degrees)
nodes_multidim = []
weights_multidim = []
for i in range(dim):
nodes_1d, weights_1d = herm.hermegauss(degrees[i])
nodes_multidim.append(nodes_1d)
weights_multidim.append(weights_1d)
grid_nodes = np.meshgrid(*nodes_multidim)
grid_weights = np.meshgrid(*weights_multidim)
nodes_flattened = []
weights_flattened = []
for i in range(dim):
nodes_flattened.append(grid_nodes[i].flatten())
weights_flattened.append(grid_weights[i].flatten())
nodes = np.vstack(nodes_flattened)
weights = np.prod(np.vstack(weights_flattened), axis=0)
return np.dot(function(nodes), weights)
def function(v): return F1_OR_F2
result = integrate(function, [100,100,100])
print("-> Result = " + str(result) + ", Time = " + str(end-start))
有点令人惊讶(至少对我而言),此方法与纯 C++ 实现之间的性能没有显着差异。特别是,f1
需要 0.059s,f2
需要 0.36s。
最佳答案
您的函数按值获取 vector ,这涉及复制 vector 。 integrate_wrapper
做额外的复制。
在这些 lambda 中通过引用接受 boost::function
并通过引用捕获 func
也是有意义的。
将这些更改为(注意 &
和 const&
位):
double integrate(boost::function<double(std::vector<double> const&)> const&);
double Quad::integrate_wrapper(boost::python::object func) {
std::function<double(vec const&)> lambda;
switch (this->nodes[0].size()) {
case 1: lambda = [&func](vec const& v) -> double { return boost::python::extract<double>(func (v[0])); }; break;
case 2: lambda = [&func](vec const& v) -> double { return boost::python::extract<double>(func(v[0], v[1])); }; break;
case 3: lambda = [&func](vec const& v) -> double { return boost::python::extract<double>(func(v[0], v[1], v[2])); }; break;
default: cout << "Dimension must be 1, 2, or 3" << endl; exit(0);
}
return integrate(lambda);
}
尽管如此,从 C++ 调用 Python 函数比调用 C++ 函数更昂贵。
人们通常使用 numpy
在 Python 中进行快速线性代数,它使用 SIMD 进行许多常见操作。在推出 C++ 实现之前,您应该首先考虑使用 numpy
。在 C++ 中,您必须在 Eigen 上使用英特尔 MKL 进行矢量化。
关于python - 为什么 C++ 比带有 boost 的 python 快得多?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/48749668/
这看起来很基础,但我想不通。是否有一种简单的 CSS 唯一方法可以使 cssa 真正快速淡入并缓慢淡出。这是为了改变多个 div 的颜色。大约 0.5 秒的缓入和 2 秒的缓出。 谢谢! 最佳答案 你
我一直在用各种语言和实现实现相同的代码(在 Blackjack 中发牌而不爆牌的方法的数量)。我注意到的一个奇怪之处是,Python 在 C 中调用分区函数的实现实际上比用 C 编写的整个程序快一点。
如果我没看错,/ 意味着它右边的节点必须是左边节点的直接子节点,例如/ul/li 返回 li 项,它们是作为文档根的 ul 项的直接子项。 //ul//li 返回 li 项,它们是文档中某处任何 ul
如何随机更新一个表。所以你给一列一个随机值。并且该列(例如“顶部”)是唯一的。如果您在数字 10 到 20 之间进行选择,并且您有 10 行,那么您就不能有未使用的数字。如果你有 Test table
这在一小部分是一个问题(因为我不明白为什么它会有所不同),在很大程度上是一篇希望能帮助其他一些可怜的程序员的帖子。 我有一个代码库,是我大约 5-7 年前第一次开始 Android 编程时编写的,它具
我正在尝试过滤关系表以获得满足两个条件的表子集(即:我想要 color_ids 为 1 或 2 的条目的所有 ID)。这是一张结实的 table ,所以我正在尝试尽可能多地进行优化。 我想知道是否有人
在上一篇《聊聊PHP中require_once()函数为什么不好用》中给大家介绍了PHP中require_once()为什么不好用的原因,感兴趣的朋友可以去阅读了解一下~ 那么本文将给大家介绍PH
很难说出这里问的是什么。这个问题模棱两可、含糊不清、不完整、过于宽泛或言辞激烈,无法以目前的形式合理回答。如需帮助澄清此问题以便可以重新打开,visit the help center . 10年前关
有没有办法提高glReadPixels的速度?目前我做: Gdx.gl.glReadPixels(0, 0, Gdx.graphics.getWidth(), Gdx.graphics.getHeig
通常,我以函数形式`:=`()来计算data.table中的多列,认为这是最有效的方法。但是我最近发现它比简单地重复使用:=慢。至少在我的电脑上。 我猜想:=的功能形式可能会产生一些开销,但这是它变慢
我的问题是针对 Windows 环境中多线程的性能问题。 在测试我的代码后,我得到的结果是增加线程数不会提高并行计算的性能,并且在经过一些计数后变得更少。到底是怎么回事?是否可以找出最佳线程数的公式:
我看到很少有相同问题的主题,但我仍然无法解决我的问题。这是我的代码 - 使用 XOR 加密的 C 套接字编程 当服务器和客户端连接时:- 用户发送消息,例如:你好- 服务器响应,例如:(服务器):你好
我正在定义继承自 Shape 类并实现“几何”属性的形状。 这是一个例子: public class Landmark : Shape { public override bool IsInB
相同代码在 Android(1Ghz Snapdragon)上的执行速度比我在 3.3 Ghz Core 2 Duo 的 PC(在桌面应用程序中)快 2 倍(PC 的类被复制到 Android 项目)
我需要将一个值与一组数组进行比较。但是,我需要比较 foreach 中的多个值。如果使用 in_array,它可能会很慢,真的很慢。有没有更快的选择?我当前的代码是 foreach($a as $b)
这个问题在这里已经有了答案: How do I write a correct micro-benchmark in Java? (11 个答案) 关闭 9 年前。 今天我做了一个简单的测试来比较
如果比较不应该以这种方式进行,我深表歉意。我是编程新手,只是很好奇为什么会这样。 我有一个包含词嵌入的大型二进制文件 (4.5gb)。每行都有一个单词,后面跟着它的嵌入,它由 300 个浮点值组成。我
我经历了几个不同的四元数乘法实现,但我很惊讶地发现引用实现是迄今为止我最快的实现。这是有问题的实现: inline static quat multiply(const quat& lhs, cons
我写了一个简单的例子,估计调用虚函数的平均时间,使用基类接口(interface)和dynamic_cast和调用非虚函数。这是它: #include #include #include #in
有没有人知道比“StackWalk”更好/更快的获取调用堆栈的方法?我还认为 stackwalk 在有很多变量的方法上也会变慢......(我想知道商业分析员是做什么的?)我在 Windows 上使用
我是一名优秀的程序员,十分优秀!