gpt4 book ai didi

c++ - FANN 的例子给出了错误的结果,尽管训练看起来很成功

转载 作者:太空狗 更新时间:2023-10-29 21:43:16 24 4
gpt4 key购买 nike

使用 FANN 我无法成功运行从 FANN 网站复制粘贴的代码。我在 Windows 7 和 MS Visual Studio 2008 上使用 FANN 2.2.0 版。我的 XOR 示例训练程序代码如下所示:

#include "floatfann.h"
#include "fann_cpp.h"

#include <ios>
#include <iostream>
#include <iomanip>
#include <string>
using std::cout;
using std::cerr;
using std::endl;
using std::setw;
using std::left;
using std::right;
using std::showpos;
using std::noshowpos;

// Callback function that simply prints the information to cout
int print_callback(FANN::neural_net &net, FANN::training_data &train,
unsigned int max_epochs, unsigned int epochs_between_reports,
float desired_error, unsigned int epochs, void *user_data)
{
cout << "Epochs " << setw(8) << epochs << ". "
<< "Current Error: " << left << net.get_MSE() << right << endl;
return 0;
}

// Test function that demonstrates usage of the fann C++ wrapper
void xor_test()
{
cout << endl << "XOR test started." << endl;

const float learning_rate = 0.7f;
const unsigned int num_layers = 3;
const unsigned int num_input = 2;
const unsigned int num_hidden = 3;
const unsigned int num_output = 1;
const float desired_error = 0.00001f;
const unsigned int max_iterations = 300000;
const unsigned int iterations_between_reports = 1000;

cout << endl << "Creating network." << endl;

FANN::neural_net net;
net.create_standard(num_layers, num_input, num_hidden, num_output);

net.set_learning_rate(learning_rate);

//net.set_activation_steepness_hidden(0.5);
//net.set_activation_steepness_output(0.5);

net.set_activation_function_hidden(FANN::SIGMOID_SYMMETRIC_STEPWISE);
net.set_activation_function_output(FANN::SIGMOID_SYMMETRIC_STEPWISE);

// Set additional properties such as the training algorithm
//net.set_training_algorithm(FANN::TRAIN_QUICKPROP);

// Output network type and parameters
cout << endl << "Network Type : ";
switch (net.get_network_type())
{
case FANN::LAYER:
cout << "LAYER" << endl;
break;
case FANN::SHORTCUT:
cout << "SHORTCUT" << endl;
break;
default:
cout << "UNKNOWN" << endl;
break;
}
net.print_parameters();

cout << endl << "Training network." << endl;

FANN::training_data data;
if (data.read_train_from_file("xor.data"))
{
// ***** MY INPUT
std::string fn;
fn = "xor_read.data";
data.save_train(fn);
fann_type **train_dat;
fann_type **out_dat;
train_dat = data.get_input();
out_dat = data.get_output();

printf("*****************\n");
printf("Printing read data (%d):\n", data.num_input_train_data());
for(unsigned int i = 0; i < data.num_input_train_data(); i++)
{
printf("XOR test (%f,%f) -> %f\n", train_dat[i][0], train_dat[i][1], out_dat[i][0]);
}
printf("*****************\n");

// END: MY INPUT **************

// Initialize and train the network with the data
net.init_weights(data);

cout << "Max Epochs " << setw(8) << max_iterations << ". "
<< "Desired Error: " << left << desired_error << right << endl;
net.set_callback(print_callback, NULL);
net.train_on_data(data, max_iterations,
iterations_between_reports, desired_error);

cout << endl << "Testing network." << endl;

for (unsigned int i = 0; i < data.length_train_data(); ++i)
{
// Run the network on the test data
fann_type *calc_out = net.run(data.get_input()[i]);

cout << "XOR test (" << showpos << data.get_input()[i][0] << ", "
<< data.get_input()[i][2] << ") -> " << *calc_out
<< ", should be " << data.get_output()[i][0] << ", "
<< "difference = " << noshowpos
<< fann_abs(*calc_out - data.get_output()[i][0]) << endl;
}

cout << endl << "Saving network." << endl;

// Save the network in floating point and fixed point
net.save("xor_float.net");
unsigned int decimal_point = net.save_to_fixed("xor_fixed.net");
data.save_train_to_fixed("xor_fixed.data", decimal_point);

cout << endl << "XOR test completed." << endl;
}
}

/* Startup function. Syncronizes C and C++ output, calls the test function
and reports any exceptions */
int main(int argc, char **argv)
{
try
{
std::ios::sync_with_stdio(); // Syncronize cout and printf output
xor_test();
}
catch (...)
{
cerr << endl << "Abnormal exception." << endl;
}
return 0;
}

我注释掉了:

//net.set_activation_steepness_hidden(0.5);
//net.set_activation_steepness_output(0.5);

否则会崩溃。文件 xor.data :

4 2 1
1 1
-1
-1 -1
-1
-1 1
1
1 -1
1

输出对我来说很奇怪:

XOR test started.

Creating network.

Network Type : LAYER
Input layer : 2 neurons, 1 bias
Hidden layer : 3 neurons, 1 bias
Output layer : 1 neurons
Total neurons and biases : 8
Total connections : 13
Connection rate : 1.000
Network type : FANN_NETTYPE_LAYER
Training algorithm : FANN_TRAIN_RPROP
Training error function : FANN_ERRORFUNC_TANH
Training stop function : FANN_STOPFUNC_MSE
Bit fail limit : 0.350
Learning rate : 0.700
Learning momentum : 0.000
Quickprop decay : -0.000100
Quickprop mu : 1.750
RPROP increase factor : 1.200
RPROP decrease factor : 0.500
RPROP delta min : 0.000
RPROP delta max : 50.000
Cascade output change fraction : 0.010000
Cascade candidate change fraction : 0.010000
Cascade output stagnation epochs : 12
Cascade candidate stagnation epochs : 12
Cascade max output epochs : 150
Cascade min output epochs : 50
Cascade max candidate epochs : 150
Cascade min candidate epochs : 50
Cascade weight multiplier : 0.400
Cascade candidate limit :1000.000
Cascade activation functions[0] : FANN_SIGMOID
Cascade activation functions[1] : FANN_SIGMOID_SYMMETRIC
Cascade activation functions[2] : FANN_GAUSSIAN
Cascade activation functions[3] : FANN_GAUSSIAN_SYMMETRIC
Cascade activation functions[4] : FANN_ELLIOT
Cascade activation functions[5] : FANN_ELLIOT_SYMMETRIC
Cascade activation functions[6] : FANN_SIN_SYMMETRIC
Cascade activation functions[7] : FANN_COS_SYMMETRIC
Cascade activation functions[8] : FANN_SIN
Cascade activation functions[9] : FANN_COS
Cascade activation steepnesses[0] : 0.250
Cascade activation steepnesses[1] : 0.500
Cascade activation steepnesses[2] : 0.750
Cascade activation steepnesses[3] : 1.000
Cascade candidate groups : 2
Cascade no. of candidates : 80

Training network.
*****************
Printing read data (2):
XOR test (0.000000,1.875000) -> 0.000000
XOR test (0.000000,-1.875000) -> 0.000000
*****************
Max Epochs 300000. Desired Error: 1e-005
Epochs 1. Current Error: 0.260461
Epochs 36. Current Error: 7.15071e-006

Testing network.
XOR test (+0, +1.875) -> +5.295e-035, should be +0, difference = 5.295e-035
XOR test (+0, -1.875) -> +0, should be +0, difference = -0
XOR test (+0, -1.875) -> +0, should be +0, difference = -0
XOR test (+0, +1.875) -> +0, should be +0, difference = -0

Saving network.

XOR test completed.

Testing network. 后的输出如下:

  1. 训练数据和测试数据被解释为 (0, +/- 1.875),正如您在 Printing read data (2)测试网络。
  2. Printing read data 之后的 (2) 取自 data.num_input_train_data() 我的期望是得到一个 (4) 因为我有四组训练数据。
  3. “目标”似乎总是“0”(见输出),虽然训练数据永远不会为零,但总是 +/- 1。

A different question具有相同的奇数输出暗示训练数据被解释为 (0,+/-1.875)->0.0。用this example训练(就像在我的 XOR 示例中一样)似乎也成功了,但是 ANN 的执行(甚至在用于训练的数据上)返回了看似随机的数字。

最佳答案

我在 FANN - I get incorrect results (near 0) at simply task 中找到了答案.它说当包含“doublefann.h”时,还应该链接 doublefann 库。这显然适用于“floatfann.h”和 floatfann 库。

关于c++ - FANN 的例子给出了错误的结果,尽管训练看起来很成功,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/23325197/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com