- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我有以下循环,我想使用 #pragma omp simd
加速:
#define N 1024
double* data = new double[N];
// Generate data, not important how.
double mean = 0.0
for (size_t i = 0; i < N; i++) {
mean += (data[i] - mean) / (i+1);
}
如我所料,直接将 #pragma omp simd
放在循环之前没有任何影响(我正在检查运行时间)。我可以使用 #pragma omp parallel for reduction(...)
和自定义 reducer 轻松解决多线程情况,如下所示,但是我如何在这里使用 OpenMP SIMD?
我正在使用以下类来实现 + 和 += 运算符,以将 double
添加到运行平均值以及组合两个运行装置:
class RunningMean {
private:
double mean;
size_t count;
public:
RunningMean(): mean(0), count(0) {}
RunningMean(double m, size_t c): mean(m), count(c) {}
RunningMean operator+(RunningMean& rhs) {
size_t c = this->count + rhs.count;
double m = (this->mean*this->count + rhs.mean*rhs.count) / c;
return RunningMean(m, c);
}
RunningMean operator+(double rhs) {
size_t c = this->count + 1;
double m = this->mean + (rhs - this->mean) / c;
return RunningMean(m, c);
}
RunningMean& operator+=(const RunningMean& rhs) {
this->mean = this->mean*this->count + rhs.mean*rhs.count;
this->count += rhs.count;
this->mean /= this->count;
return *this;
}
RunningMean& operator+=(double rhs) {
this->count++;
this->mean += (rhs - this->mean) / this->count;
return *this;
}
double getMean() { return mean; }
size_t getCount() { return count; }
};
这方面的数学来自 http://prod.sandia.gov/techlib/access-control.cgi/2008/086212.pdf .对于多线程、非 SIMD 并行缩减,我执行以下操作:
#pragma omp declare reduction (runningmean : RunningMean : omp_out += omp_in)
RunningMean mean;
#pragma omp parallel for reduction(runningmean:mean)
for (size_t i = 0; i < N; i++)
mean += data[i];
这让我在使用 8 个线程的 Core i7 2600k 上获得了 3.2 倍的加速。
如果我要在没有 OpenMP 的情况下自己实现 SIMD,我将只在一个 vector 中保留 4 个均值,在另一个 vector 中保留 4 个计数(假设使用 AVX 指令)并继续使用向量化添加 4 元素 double vector operator+(double rhs)
的版本。完成后,我将使用 operator+=
中的数学添加生成的 4 对均值和计数。我如何指示 OpenMP 执行此操作?
最佳答案
问题是
mean += (data[i] - mean) / (i+1);
不容易服从 SIMD。但是,通过仔细研究数学,可以毫不费力地将其矢量化。
关键的论坛是
mean(n+m) = (n*mean(n) + m*mean(m))/(n+m)
显示了如何将 n
个数的均值和 m
个数的均值相加。这可以在您的运算符定义 RunningMean operator+(RunningMean& rhs)
中看到。这解释了为什么您的并行代码有效。如果我们对您的 C++ 代码进行反卷积,我认为这会更清楚:
double mean = 0.0;
int count = 0;
#pragma omp parallel
{
double mean_private = 0.0;
int count_private = 0;
#pragma omp for nowait
for(size_t i=0; i<N; i++) {
count_private ++;
mean_private += (data[i] - mean_private)/count_private;
}
#pragma omp critical
{
mean = (count_private*mean_private + count*mean);
count += count_private;
mean /= count;
}
}
但我们可以对 SIMD 使用相同的想法(并将它们组合在一起)。但是让我们先做只有 SIMD 的部分。使用 AVX,我们可以同时处理四种并行方式。每个平行均值将处理以下数据元素:
mean 1 data elements: 0, 4, 8, 12,...
mean 2 data elements: 1, 5, 9, 13,...
mean 3 data elements: 2, 6, 10, 14,...
mean 4 data elements: 3, 7, 11, 15,...
首先,我们遍历了所有元素,然后将四个平行的和相加并除以四(因为每个和都遍历了 N/4 个元素)。
下面是代码
double mean = 0.0;
__m256d mean4 = _mm256_set1_pd(0.0);
__m256d count4 = _mm256_set1_pd(0.0);
for(size_t i=0; i<N/4; i++) {
count4 = _mm256_add_pd(count4,_mm256_set1_pd(1.0));
__m256d t1 = _mm256_loadu_pd(&data[4*i]);
__m256d t2 = _mm256_div_pd(_mm256_sub_pd(t1, mean4), count4);
mean4 = _mm256_add_pd(t2, mean4);
}
__m256d t1 = _mm256_hadd_pd(mean4,mean4);
__m128d t2 = _mm256_extractf128_pd(t1,1);
__m128d t3 = _mm_add_sd(_mm256_castpd256_pd128(t1),t2);
mean = _mm_cvtsd_f64(t3)/4;
int count = 0;
double mean2 = 0;
for(size_t i=4*(N/4); i<N; i++) {
count++;
mean2 += (data[i] - mean2)/count;
}
mean = (4*(N/4)*mean + count*mean2)/N;
最后,我们可以将它与 OpenMP 结合起来,像这样充分利用 SIMD 和 MIMD 的优势
double mean = 0.0;
int count = 0;
#pragma omp parallel
{
double mean_private = 0.0;
int count_private = 0;
__m256d mean4 = _mm256_set1_pd(0.0);
__m256d count4 = _mm256_set1_pd(0.0);
#pragma omp for nowait
for(size_t i=0; i<N/4; i++) {
count_private++;
count4 = _mm256_add_pd(count4,_mm256_set1_pd(1.0));
__m256d t1 = _mm256_loadu_pd(&data[4*i]);
__m256d t2 = _mm256_div_pd(_mm256_sub_pd(t1, mean4), count4);
mean4 = _mm256_add_pd(t2, mean4);
}
__m256d t1 = _mm256_hadd_pd(mean4,mean4);
__m128d t2 = _mm256_extractf128_pd(t1,1);
__m128d t3 = _mm_add_sd(_mm256_castpd256_pd128(t1),t2);
mean_private = _mm_cvtsd_f64(t3)/4;
#pragma omp critical
{
mean = (count_private*mean_private + count*mean);
count += count_private;
mean /= count;
}
}
int count2 = 0;
double mean2 = 0;
for(size_t i=4*(N/4); i<N; i++) {
count2++;
mean2 += (data[i] - mean2)/count2;
}
mean = (4*(N/4)*mean + count2*mean2)/N;
这是一个工作示例(使用 -O3 -mavx -fopenmp
编译)
#include <stdio.h>
#include <stdlib.h>
#include <x86intrin.h>
double mean_simd(double *data, const int N) {
double mean = 0.0;
__m256d mean4 = _mm256_set1_pd(0.0);
__m256d count4 = _mm256_set1_pd(0.0);
for(size_t i=0; i<N/4; i++) {
count4 = _mm256_add_pd(count4,_mm256_set1_pd(1.0));
__m256d t1 = _mm256_loadu_pd(&data[4*i]);
__m256d t2 = _mm256_div_pd(_mm256_sub_pd(t1, mean4), count4);
mean4 = _mm256_add_pd(t2, mean4);
}
__m256d t1 = _mm256_hadd_pd(mean4,mean4);
__m128d t2 = _mm256_extractf128_pd(t1,1);
__m128d t3 = _mm_add_sd(_mm256_castpd256_pd128(t1),t2);
mean = _mm_cvtsd_f64(t3)/4;
int count = 0;
double mean2 = 0;
for(size_t i=4*(N/4); i<N; i++) {
count++;
mean2 += (data[i] - mean2)/count;
}
mean = (4*(N/4)*mean + count*mean2)/N;
return mean;
}
double mean_simd_omp(double *data, const int N) {
double mean = 0.0;
int count = 0;
#pragma omp parallel
{
double mean_private = 0.0;
int count_private = 0;
__m256d mean4 = _mm256_set1_pd(0.0);
__m256d count4 = _mm256_set1_pd(0.0);
#pragma omp for nowait
for(size_t i=0; i<N/4; i++) {
count_private++;
count4 = _mm256_add_pd(count4,_mm256_set1_pd(1.0));
__m256d t1 = _mm256_loadu_pd(&data[4*i]);
__m256d t2 = _mm256_div_pd(_mm256_sub_pd(t1, mean4), count4);
mean4 = _mm256_add_pd(t2, mean4);
}
__m256d t1 = _mm256_hadd_pd(mean4,mean4);
__m128d t2 = _mm256_extractf128_pd(t1,1);
__m128d t3 = _mm_add_sd(_mm256_castpd256_pd128(t1),t2);
mean_private = _mm_cvtsd_f64(t3)/4;
#pragma omp critical
{
mean = (count_private*mean_private + count*mean);
count += count_private;
mean /= count;
}
}
int count2 = 0;
double mean2 = 0;
for(size_t i=4*(N/4); i<N; i++) {
count2++;
mean2 += (data[i] - mean2)/count2;
}
mean = (4*(N/4)*mean + count2*mean2)/N;
return mean;
}
int main() {
const int N = 1001;
double data[N];
for(int i=0; i<N; i++) data[i] = 1.0*rand()/RAND_MAX;
float sum = 0; for(int i=0; i<N; i++) sum+= data[i]; sum/=N;
printf("mean %f\n", sum);
printf("mean_simd %f\n", mean_simd(data, N);
printf("mean_simd_omp %f\n", mean_simd_omp(data, N));
}
关于c++ - 使用自定义运算符减少 OpenMP SIMD,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/25652754/
我是 Bison 解析的新手,我无法理解它是如何工作的。我有以下语法,其中我保留了最低限度的语法来突出问题。 %left '~' %left '+' %token T_VARIABLE %% star
我链接了 2 个映射器和 1 个缩减器。是否可以将中间输出(链中每个映射器的 o/p)写入 HDFS?我尝试为每个设置 OutputPath,但它似乎不起作用。现在,我不确定是否可以完成。有什么建议吗
我正在编写一些代码来管理自定义磁盘文件结构并将其同步到未连接的系统。我的要求之一是能够在实际生成同步内容之前估计同步的大小。作为一个简单的解决方案,我整理了一个包含完整路径文件名的 map ,作为高效
我来自一个 SQL 世界,其中查找由多个对象属性(published = TRUE 或 user_id = X)完成,并且有 任何地方都没有加入 (因为 1:1 缓存层)。文档数据库似乎很适合我的数据
在 R 中,我有一个整数向量。从这个向量中,我想随机减少每个整数元素的值,以获得向量的总和,即初始总和的百分比。 在这个例子中,我想将向量“x”减少到向量“y”,其中每个元素都被随机减少以获得等于初始
我发现自己遇到过几次我有一个 reducer /组合 fn 的情况,如下所示: def combiner(a: String, b: String): Either[String, String]
Ubuntu 12.04 nginx 1.2.4 avconv版本 avconv version 0.8.10-4:0.8.10-0ubuntu0.12.04.1, Copyright (c) 200
我是 R 编程语言的新手。我有一个包含 2 列(ID 和 Num)的数据集,如下所示: ID Num 3 8 3 12 4 15 4 18 4
我正在使用高阶函数将函数应用于向量中的每个元素并将结果作为标量值返回。 假设我有: v = c(0, 1, 2, 3, 4, 5, 6, 7, 8) 我想计算以左边 5 个整数为中心的所有这些整数的总
关闭。这个问题需要debugging details .它目前不接受答案。 编辑问题以包含 desired behavior, a specific problem or error, and th
这个问题在这里已经有了答案: How to write the dataframes in a list to a single csv file (2 个回答) 5年前关闭。 我正在尝试使用 Red
刚开始学习CUDA编程,对归约有些迷茫。 我知道与共享内存相比,全局内存有很多访问延迟,但我可以使用全局内存来(至少)模拟类似于共享内存的行为吗? 例如,我想对长度恰好为 BLOCK_SIZE * T
我经常使用OptiPNG或pngcrush减小PNG图像的文件大小。 我希望能够从.NET应用程序中以编程方式执行此类操作。我正在动态生成要发送到移动设备的PNG,因此我想减小文件大小。 图像质量很重
减少和减少让您在序列上累积状态。 序列中的每个元素都会修改累积的状态,直到 到达序列的末尾。 在无限列表上调用reduce 或reductions 有什么含义? (def c (cycle [0]))
这与R: use the newly generated data in the previous row有关 我意识到我面临的实际问题比我在上面的线程中给出的示例要复杂一些 - 似乎我必须将 3 个
有什么办法可以减少.ttf字体的大小?即如果我们要删除一些我们不使用的glyps。 最佳答案 使用Google Web Fonts,您可以限制字符集,例如: //fonts.googleapis.co
我需要在iOS中制作一个应用程序,在她的工作过程中发出类似“哔”的声音。 我已经使用MPMusicPlayerController实现了与背景ipod的交互。 问题: 由于来自ipod的音乐音量很大,
我有一个嵌套 map m,如下所示: m = Map("电子邮件"-> "a@b.com", "背景"-> Map("语言"-> "英语")) 我有一个数组arr = Array("backgroun
有什么原因为什么不应该转发map / reduce函数中收到的可写内容? 我的意思是-每个map / reduce函数都有一个可写的键/值,并可能发出一个键/值对。如果我想执行一些过滤,我应该只发出接
假设我有一个数据列表 val data = listOf("F 1", "D 2", "U 1", "D 3", "F 10") 我想执行每个元素的给定逻辑。 我必须在外部添加 var acc2 =
我是一名优秀的程序员,十分优秀!