作者热门文章
- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
基于 this question .
df = pandas.DataFrame([[2001, "Jack", 77], [2005, "Jack", 44], [2001, "Jill", 93]],columns=['Year','Name','Value'])
Year Name Value
0 2001 Jack 77
1 2005 Jack 44
2 2001 Jill 93For each unique Name, I would like to keep the row with the largest Year value. In the above example I would like to get the table
Year Name Value
0 2005 Jack 44
1 2001 Jill 93
我尝试用 groupby
+ (apply
) 解决这个问题:
df.groupby('Name', as_index=False)\
.apply(lambda x: x.sort_values('Value').head(1))
Year Name Value
0 0 2001 Jack 44
1 2 2001 Jill 93
这不是最好的方法,但我对正在发生的事情及其原因更感兴趣。结果有一个如下所示的 MultiIndex
:
MultiIndex(levels=[[0, 1], [0, 2]],
labels=[[0, 1], [0, 1]])
我不是在寻找解决方法。实际上,我更想知道为什么会发生这种情况,以及如何在不改变我的方法的情况下防止这种情况发生。
最佳答案
IIUC,使用group_keys=False
:
df.groupby('Name', group_keys=False).apply(lambda x: x.sort_values('Value').head(1))
输出:
Year Name Value
1 2005 Jack 44
2 2001 Jill 93
关于python - 如何从 GroupBy.apply() 中删除多索引?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/46678142/
我是一名优秀的程序员,十分优秀!