- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
Python.matplotlib:如何高效地将大量线段着色为独立渐变?
已经阅读 this和 this和其他东西;没有一个是我们的答案!
我们有许多单独的线希望以渐变颜色绘制每条线。
上面第一个链接中提到的解决方案,如果你有多于一个字符串,则不起作用。换句话说,改变颜色循环会影响绘图中的所有内容,而不是唯一感兴趣的行。 这根本不符合我们的兴趣。
指向 matplotlib 站点的第二个链接使用将每一行分割成许多行。这不是一个好方法,因为对于大量的行,比如 10000 行甚至更多;即使每行只选择 10 个段,结果也太大了!即使这样,生成的线条也根本不会平滑着色!如果将分割数作为线段的函数以获得更好的梯度,结果将非常巨大!难以显示,难以正确保存为文件。
最佳答案
一个(小的)加速是添加一个行集合而不是 10000 个单独的行集合。
只要所有线条共享相同的颜色图,您就可以将它们分组到一个线条集合中,并且每个线条仍然可以有一个独立的渐变。
Matplotlib 对于这类事情仍然很慢。它针对质量输出进行了优化,而不是快速绘制时间。但是,您可以稍微加快速度 (~3x)。
那么,作为我认为您现在可能(?)正在做的一个例子:
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.collections import LineCollection
# Make random number generation consistent between runs
np.random.seed(5)
def main():
numlines, numpoints = 2, 3
lines = np.random.random((numlines, numpoints, 2))
fig, ax = plt.subplots()
for line in lines:
# Add "num" additional segments to the line
segments, color_scalar = interp(line, num=20)
coll = LineCollection(segments)
coll.set_array(color_scalar)
ax.add_collection(coll)
plt.show()
def interp(data, num=20):
"""Add "num" additional points to "data" at evenly spaced intervals and
separate into individual segments."""
x, y = data.T
dist = np.hypot(np.diff(x - x.min()), np.diff(y - y.min())).cumsum()
t = np.r_[0, dist] / dist.max()
ti = np.linspace(0, 1, num, endpoint=True)
xi = np.interp(ti, t, x)
yi = np.interp(ti, t, y)
# Insert the original vertices
indices = np.searchsorted(ti, t)
xi = np.insert(xi, indices, x)
yi = np.insert(yi, indices, y)
return reshuffle(xi, yi), ti
def reshuffle(x, y):
"""Reshape the line represented by "x" and "y" into an array of individual
segments."""
points = np.vstack([x, y]).T.reshape(-1,1,2)
points = np.concatenate([points[:-1], points[1:]], axis=1)
return points
if __name__ == '__main__':
main()
相反,我建议按照这些思路做一些事情(唯一的区别在于 main
函数):
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.collections import LineCollection
# Make random number generation consistent between runs
np.random.seed(5)
def main():
numlines, numpoints = 2, 3
points = np.random.random((numlines, numpoints, 2))
# Add "num" additional segments to each line
segments, color_scalar = zip(*[interp(item, num=20) for item in points])
segments = np.vstack(segments)
color_scalar = np.hstack(color_scalar)
fig, ax = plt.subplots()
coll = LineCollection(segments)
coll.set_array(color_scalar)
ax.add_collection(coll)
plt.show()
def interp(data, num=20):
"""Add "num" additional points to "data" at evenly spaced intervals and
separate into individual segments."""
x, y = data.T
dist = np.hypot(np.diff(x - x.min()), np.diff(y - y.min())).cumsum()
t = np.r_[0, dist] / dist.max()
ti = np.linspace(0, 1, num, endpoint=True)
xi = np.interp(ti, t, x)
yi = np.interp(ti, t, y)
# Insert the original vertices
indices = np.searchsorted(ti, t)
xi = np.insert(xi, indices, x)
yi = np.insert(yi, indices, y)
return reshuffle(xi, yi), ti
def reshuffle(x, y):
"""Reshape the line represented by "x" and "y" into an array of individual
segments."""
points = np.vstack([x, y]).T.reshape(-1,1,2)
points = np.concatenate([points[:-1], points[1:]], axis=1)
return points
if __name__ == '__main__':
main()
两个版本生成相同的图:
但是,如果我们将行数增加到 10000,我们将开始看到性能上的显着差异。
使用 10000 条线,每条线有 3 个点,另外还有 20 个点在整个颜色渐变中插值(每条线有 23 个线段),并查看将图形保存为 png 文件所花费的时间:
Took 10.866694212 sec with a single collection
Took 28.594727993 sec with multiple collections
因此,在这种特殊情况下,使用单行集合将提供不到 3 倍的加速。它不是很出色,但聊胜于无。
这是时序代码和输出图,不管它值多少钱(由于绘图的顺序不同,输出图并不完全相同。如果您需要控制 z 级别,则必须坚持分开行集合):
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.collections import LineCollection
import time
# Make random number generation consistent between runs
np.random.seed(5)
def main():
numlines, numpoints = 10000, 3
lines = np.random.random((numlines, numpoints, 2))
# Overly simplistic timing, but timeit is overkill for this exmaple
tic = time.time()
single_collection(lines).savefig('/tmp/test_single.png')
toc = time.time()
print 'Took {} sec with a single collection'.format(toc-tic)
tic = time.time()
multiple_collections(lines).savefig('/tmp/test_multiple.png')
toc = time.time()
print 'Took {} sec with multiple collections'.format(toc-tic)
def single_collection(lines):
# Add "num" additional segments to each line
segments, color_scalar = zip(*[interp(item, num=20) for item in lines])
segments = np.vstack(segments)
color_scalar = np.hstack(color_scalar)
fig, ax = plt.subplots()
coll = LineCollection(segments)
coll.set_array(color_scalar)
ax.add_collection(coll)
return fig
def multiple_collections(lines):
fig, ax = plt.subplots()
for line in lines:
# Add "num" additional segments to the line
segments, color_scalar = interp(line, num=20)
coll = LineCollection(segments)
coll.set_array(color_scalar)
ax.add_collection(coll)
return fig
def interp(data, num=20):
"""Add "num" additional points to "data" at evenly spaced intervals and
separate into individual segments."""
x, y = data.T
dist = np.hypot(np.diff(x - x.min()), np.diff(y - y.min())).cumsum()
t = np.r_[0, dist] / dist.max()
ti = np.linspace(0, 1, num, endpoint=True)
xi = np.interp(ti, t, x)
yi = np.interp(ti, t, y)
# Insert the original vertices
indices = np.searchsorted(ti, t)
xi = np.insert(xi, indices, x)
yi = np.insert(yi, indices, y)
return reshuffle(xi, yi), ti
def reshuffle(x, y):
"""Reshape the line represented by "x" and "y" into an array of individual
segments."""
points = np.vstack([x, y]).T.reshape(-1,1,2)
points = np.concatenate([points[:-1], points[1:]], axis=1)
return points
if __name__ == '__main__':
main()
关于python - Matplotlib:如何有效地将大量线段着色为独立梯度,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/13622909/
我无法在此图中定位轴标签。我喜欢放置顶部标签,使管道与网格对齐,并放置左右标签,以便它们不接触绘图。 我试过了 ax.tick_params(axis='both', which='both'
我使用的是 python 2,下面的代码只是使用了一些示例数据,我的实际数据可能有不同的长度,并且可能不是很细。 import numpy as np import datetime i
给定坐标 [1,5,7,3,5,10,3,6,8]为 matplotlib.pyplot ,如何突出显示或着色线条的不同部分。例如,列表中的坐标 1-3 ( [1,5,7,3] ) 表示属性 a .我
我正在matplotlib中绘制以下图像。 我的问题是,图像看起来像这样,但是,我想使背景变暗,因为当我打印该图像时,灰度部分不会出现在打印物中。有人可以告诉我API进行此更改吗? 我使用简单的API
这是关于matplotlib的一个非常基本的问题,但是我不知道该怎么做: 我想绘制多个图形,并使用绘制窗口中的箭头从一个移到另一个。 目前,我只知道如何创建多个图并将其绘制在不同的窗口中,如下所示:
在 matplotlib 中绘制小块对象时,由于显示分辨率而引入了伪影。使用抗锯齿并不能解决问题。 这个问题有解决方案吗? import matplotlib.pyplot as plt impo
对于直方图,有一个简单的内置选项 histtype='step' .如何制作相同风格的条形图? 最佳答案 [阅读评论后添加答案] 将可选关键字设置为 fill=False对于条形图: import m
我正在尝试在 (6X3) 网格上创建子图。我对图例的位置有疑问。图例对所有子图都是通用的。 lgend 现在与 y 轴标签重叠 我尝试删除 constrained_layout=True 选项。但这在
我有一个带有一些线段( LineCollection )和一些点的图表。这些线和点有一些与它们相关的值,但没有绘制出来。我希望能够添加鼠标悬停工具提示或其他方法来轻松找到点和线的关联值。这对于点或线段
我想创建一个带有对齐不同曲线文本的图例的图。这是一个最小的工作示例: import matplotlib.pyplot as plt import numpy as np x=np.linspace(
可以说我正在用matplotlib绘制一条线并添加一个图例。 在图例中,其显示为------ Label。当绘制较小的图形尺寸以进行打印时,我发现该行的默认水平长度太长。 是否存在将------ La
我正在使用 matplotlib 构建一个 3D 散点图,但无法使生成的图形具有所有 3 个轴的共同原点。我怎样才能做到这一点? 我的代码(到目前为止),我还没有为轴规范实现任何定义,因为我对 Pyt
我有一个我想使用的绘图布局,其中 9 个不同的数据簇被布置在一个方形网格上。网格中的每个框都包含 3 个并排布置的箱线图。 我最初的想法是这将适合 3x3 子图布局,每个单独的子图本身被划分为 3x1
我的图形从y=-1变为y=10 我想在任意位置写一小段文字,例如x=2000,y=5: ax.annotate('MgII', xy=(2000.0, 5.0), xycoords='data')
我想使用LateX格式来构建一个表达式,其中出现一些数字,但这些数字是用LateX表达式中的变量表示的。 实际的目标是在axes.annotate()方法中使用它,但是为了讨论起见,这里是一个原理代码
我需要比较两组的二维分布。 当我使用 matplotlib.pyplot.contourf并覆盖图,每个等高线图的背景颜色填充整个图空间。有没有办法让每个等高线图的最低等高线级别透明,以便更容易看到每
在R中,有一个locator函数,类似于Matlab的ginput,您可以用鼠标单击图形并选择任何x,y坐标。此外,还有一个名为identify(x,y)的函数,如果您给它绘制了一组绘制的点x,y,然
我想用matplotlib生成矢量图。我尽力了-但输出是光栅图像。这是我使用的: import matplotlib matplotlib.use('Agg') import matplotlib.p
我正在尝试使用 matplotlib 制作具有非常小的灰点的散点图。由于点密度的原因,点需要很小。问题是 scatter() 函数的标记似乎既有线条又有填充。当标记很小时,只有线条可见,而看不到填充,
我不太明白为什么我无法在指定的限制内创建水平和垂直线。我想用这个框绑定(bind)数据。然而,双方似乎并没有遵守我的指示。为什么是这样? # CREATING A BOUNDING BOX # BOT
我是一名优秀的程序员,十分优秀!