- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我试图在我的图像中检测包含圆点的圆圈,但不幸的是我无法这样做。我正在使用 opencv HoughTransform,但找不到使它起作用的参数。
src = imread("encoded.jpg",1);
/// Convert it to gray
cvtColor(src, src_gray, CV_BGR2GRAY);
vector<Vec3f> circles;
/// Apply the Hough Transform to find the circles
HoughCircles(src_gray, circles, CV_HOUGH_GRADIENT, 1, 10,
100, 30, 1, 30 // change the last two parameters
// (min_radius & max_radius) to detect larger circles
);
/// Draw the circles detected
for (size_t i = 0; i < circles.size(); i++)
{
cout << "Positive" << endl;
Point center(cvRound(circles[i][0]), cvRound(circles[i][1]));
int radius = cvRound(circles[i][2]);
// circle center
circle(src, center, 3, Scalar(0, 255, 0), -1, 8, 0);
// circle outline
circle(src, center, radius, Scalar(0, 0, 255), 3, 8, 0);
}
/// Show your results
namedWindow("Hough Circle Transform Demo", CV_WINDOW_AUTOSIZE);
imshow("Hough Circle Transform Demo", src_gray);
waitKey(0);
为什么 HoughCircles 无法检测到此图像中的圆圈?它似乎正在处理其他更简单的图像,例如电路板图像。
最佳答案
关键在于对 HoughCircles 正在做什么有足够的直觉,这样您就可以构建一个程序,为您想要在其中找到圆圈的所有各种图像自动调整超参数。
核心问题,一些直觉
HoughCircles 并不是独立存在的,尽管它表明它可能具有最小和最大半径参数,但您需要运行数百或数千次迭代才能在正确的设置中自动调整和自动拨号。然后在你完成之后你需要后处理验证步骤来 100% 确定这个圆是你想要的。问题是您正在尝试通过猜测和检查来手动调整 HoughCircles 的输入参数。那根本行不通。让计算机为您自动调整这些参数。
HoughCircles 的手动调整什么时候可以令人满意?
如果您想手动对参数进行硬编码,那么您绝对需要做的一件事就是将圆的精确半径控制在一两个像素以内。您可以猜测 dp 分辨率并设置累加器数组投票阈值,您可能没问题。但是,如果您不知道半径,则 HoughCircles 输出将毫无用处,因为它要么到处都找不到圆,要么找不到任何地方。假设您确实手动找到了一个可接受的调整,您向它展示了几个像素不同的图像,并且您的 HoughCircles 吓坏了并在图像中找到了 200 个圆圈。毫无值(value)。
有希望:
希望来自于 HoughCircles 即使在大图像上也非常快的事实。您可以为 HoughCircles 编写一个程序来完美地自动调整设置。如果您不知道半径并且它可能很小或很大,您可以从一个很大的“最小距离参数”、一个非常好的 dp 分辨率和一个非常高的投票阈值开始。因此,当您开始迭代时,HoughCircles 可以预见地拒绝找到任何圈子,因为设置过于激进并且投票没有清除阈值。但是循环会不断迭代并逐步达到最佳设置,让最佳设置成为表明您已完成的避雷针。您找到的第一个圆圈将是图像中像素完美的最大和最佳圆圈,HoughCircles 会给您留下一个像素完美的圆圈,就在它应该出现的位置。只是您必须运行它 5000 次。
示例 python 代码(抱歉不是 C++):
它的边缘仍然很粗糙,但您应该能够将其清理干净,以便在一秒钟内获得令人满意的像素完美效果。
import numpy as np
import argparse
import cv2
import signal
from functools import wraps
import errno
import os
import copy
# construct the argument parser and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", required = True, help = "Path to the image")
args = vars(ap.parse_args())
# load the image, clone it for output, and then convert it to grayscale
image = cv2.imread(args["image"])
orig_image = np.copy(image)
output = image.copy()
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
cv2.imshow("gray", gray)
cv2.waitKey(0)
circles = None
minimum_circle_size = 100 #this is the range of possible circle in pixels you want to find
maximum_circle_size = 150 #maximum possible circle size you're willing to find in pixels
guess_dp = 1.0
number_of_circles_expected = 1 #we expect to find just one circle
breakout = False
#hand tune this
max_guess_accumulator_array_threshold = 100 #minimum of 1, no maximum, (max 300?) the quantity of votes
#needed to qualify for a circle to be found.
circleLog = []
guess_accumulator_array_threshold = max_guess_accumulator_array_threshold
while guess_accumulator_array_threshold > 1 and breakout == False:
#start out with smallest resolution possible, to find the most precise circle, then creep bigger if none found
guess_dp = 1.0
print("resetting guess_dp:" + str(guess_dp))
while guess_dp < 9 and breakout == False:
guess_radius = maximum_circle_size
print("setting guess_radius: " + str(guess_radius))
print(circles is None)
while True:
#HoughCircles algorithm isn't strong enough to stand on its own if you don't
#know EXACTLY what radius the circle in the image is, (accurate to within 3 pixels)
#If you don't know radius, you need lots of guess and check and lots of post-processing
#verification. Luckily HoughCircles is pretty quick so we can brute force.
print("guessing radius: " + str(guess_radius) +
" and dp: " + str(guess_dp) + " vote threshold: " +
str(guess_accumulator_array_threshold))
circles = cv2.HoughCircles(gray,
cv2.HOUGH_GRADIENT,
dp=guess_dp, #resolution of accumulator array.
minDist=100, #number of pixels center of circles should be from each other, hardcode
param1=50,
param2=guess_accumulator_array_threshold,
minRadius=(guess_radius-3), #HoughCircles will look for circles at minimum this size
maxRadius=(guess_radius+3) #HoughCircles will look for circles at maximum this size
)
if circles is not None:
if len(circles[0]) == number_of_circles_expected:
print("len of circles: " + str(len(circles)))
circleLog.append(copy.copy(circles))
print("k1")
break
circles = None
guess_radius -= 5
if guess_radius < 40:
break;
guess_dp += 1.5
guess_accumulator_array_threshold -= 2
#Return the circleLog with the highest accumulator threshold
# ensure at least some circles were found
for cir in circleLog:
# convert the (x, y) coordinates and radius of the circles to integers
output = np.copy(orig_image)
if (len(cir) > 1):
print("FAIL before")
exit()
print(cir[0, :])
cir = np.round(cir[0, :]).astype("int")
# loop over the (x, y) coordinates and radius of the circles
if (len(cir) > 1):
print("FAIL after")
exit()
for (x, y, r) in cir:
# draw the circle in the output image, then draw a rectangle
# corresponding to the center of the circle
cv2.circle(output, (x, y), r, (0, 0, 255), 2)
cv2.rectangle(output, (x - 5, y - 5), (x + 5, y + 5), (0, 128, 255), -1)
# show the output image
cv2.imshow("output", np.hstack([orig_image, output]))
cv2.waitKey(0)
因此,如果您运行它,它需要 5 秒的时间,但它几乎达到了像素完美(自动调谐器的进一步手动调整使其达到亚像素完美):
对此:
使这项工作成功的秘诀在于您在开始之前拥有多少信息。如果您知道半径到某个公差(例如 20 像素),那么您就完成了。但如果你不这样做,你必须聪明地知道你如何通过仔细接近决议和投票阈值来爬上最大选票的半径。如果圆圈形状怪异,则dp分辨率需要更高,投票阈值需要探索更低的范围。
关于c++ - HoughCircles 无法在此图像上检测到圆圈,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/38048265/
这是一个与 Get OS-Version in WinRT Metro App C# 相关的问题但不是它的重复项。 是否有任何选项可以从 Metro 应用程序检测系统上是否有可用的桌面功能?据我所知,
我想在闹钟响起时做点什么。例如, toast 或设置新闹钟。我正在寻找可以检测闹钟何时响起的东西。首先,我在寻找广播 Action ,但找不到。也许是我的错? 当闹钟响起时,还有其他方法可以做些什么吗
如果某个 JS 添加了一个突变观察者,其他 JS 是否有可能检测、删除、替换或更改该观察者?我担心的是,如果某些 JS 旨在破坏某些 DOM 元素而不被发现,那么 JS 可能想要摆脱任何观察该 DOM
Closed. This question does not meet Stack Overflow guidelines。它当前不接受答案。 想要改善这个问题吗?更新问题,以便将其作为on-topi
有没有办法在您的 Activity/应用程序中(以编程方式)知道用户已通过 USB 将您的手机连接到 PC? 最佳答案 有人建议使用 UMS_CONNECTED自最新版本的 Android 起已弃用
我正在想办法测量速度滚动事件,这将产生某种代表速度的数字(相对于所花费的时间,从滚动点 A 到点 B 的距离)。 我欢迎任何以伪代码形式提出的建议...... 我试图在网上找到有关此问题的信息,但找不
某些 JavaScript 是否可以检测 Skype 是否安装? 我问的原因是我想基于此更改链接的 href:如果未安装 Skype,则显示一个弹出窗口,解释 Skype 是什么以及如何安装它,如果已
我们正在为 OS X 制作一个使用 Quartz Events 移动光标的用户空间设备驱动程序,当游戏(尤其是在窗口模式下运行的游戏)无法正确捕获鼠标指针时,我们遇到了问题(= 将其包含/保留在其窗口
我可以在 Controller 中看到事件 $routeChangeStart,但我不知道如何告诉 Angular 留下来。我需要弹出类似“您要保存、删除还是取消吗?”的信息。如果用户选择取消,则停留
我正在解决一个问题,并且已经花了一些时间。问题陈述:给你一个正整数和负整数的数组。如果索引处的数字 n 为正,则向前移动 n 步。相反,如果为负数(-n),则向后移动 n 步。假设数组的第一个元素向前
我试图建立一个条件,其中 [i] 是 data.length 的值,问题是当有超过 1 个值时一切正常,但当只有 1 个值时,脚本不起作用。 out.href = data[i].hr
这是我的问题,我需要检测图像中的 bolt 和四分之一,我一直在搜索并找到 OpenCV,但据我所知它还没有在 Java 中。你们打算如何解决这个问题? 最佳答案 实际上有一个 OpenCV 的 Ja
是否可以检测 ping? IE。设备 1 ping 设备 2,我想要可以在设备 2 上运行的代码,该代码可以在设备 1 ping 设备时进行检测。 最佳答案 ping 实用程序使用的字面消息(“ICM
我每天多次运行构建脚本。我的感觉是我和我的同事花费了大量时间等待这个脚本执行。现在想知道:我们每天花多少时间等待脚本执行? .我可以对总体平均值感到满意,即使我真的很想拥有每天的数据(例如“上周一我们
我已经完成了对项目的编码,但是当我在客户端中提交了源代码时,就对它进行了测试,然后检测到内存泄漏。我已经在Instruments using Leaks中进行了测试。 我遇到的问题是AVPlayer和
我想我可以用 std.traits.functionAttributes 来做到这一点,但它不支持 static。对于任何类型的可调用对象(包含 opCall 的结构),我如何判断该可调用对象是否使用
我正在使用多核 R 包中的并行和收集函数来并行化简单的矩阵乘法代码。答案是正确的,但并行版本似乎与串行版本花费的时间相同。 我怀疑它仅在一个内核上运行(而不是在我的机器上可用的 8 个内核!)。有没有
我正在尝试在读取 csv 文件时编写一个这样的 if 语句: if row = [] or EOF: do stuff 我在网上搜索过,但找不到任何方法可以做到这一点。帮忙? 最佳答案 wit
我想捕捉一个 onFontSizeChange 事件然后做一些事情(比如重新渲染,因为浏览器已经改变了我的字体大小)。不幸的是,不存在这样的事件,所以我必须找到一种方法来做到这一点。 我见过有人在不可
我有一个使用 Windows 服务的 C# 应用程序,该服务并非始终打开,我希望能够在该服务启动和关闭时发送电子邮件通知。我已经编写了电子邮件脚本,但我似乎无法弄清楚如何检测服务状态更改。 我一直在阅
我是一名优秀的程序员,十分优秀!