- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我正在使用 CAFFE 编写 C++ 代码来预测单个(目前)图像。图片已经过预处理,格式为.png。我创建了一个 Net 对象并读入了经过训练的模型。现在,我需要使用 .png 图像作为输入层并调用 net.Forward() - 但有人可以帮我弄清楚如何设置输入层吗?
我在网上找到了几个示例,但没有一个有效,而且几乎所有示例都使用了已弃用的功能。根据:Berkeley's Net API ,不推荐使用“ForwardPrefilled”,不推荐使用“Forward(vector, float*)”。 API 表明应该“设置输入 blob,然后改用 Forward()”。这是有道理的,但是“设置输入 blob”部分没有展开,而且我找不到一个很好的 C++ 示例来说明如何做到这一点。
我不确定使用 caffe::Datum 是否正确,但我一直在玩这个:
float lossVal = 0.0;
caffe::Datum datum;
caffe::ReadImageToDatum("myImg.png", 1, imgDims[0], imgDims[1], &datum);
caffe::Blob< float > *imgBlob = new caffe::Blob< float >(1, datum.channels(), datum.height(), datum.width());
//How to get the image data into the blob, and the blob into the net as input layer???
const vector< caffe::Blob< float >* > &result = caffeNet.Forward(&lossVal);
同样,我想按照 API 的指示设置输入 blob,然后使用(未弃用的)caffeNet.Forward(&lossVal) 获取结果,而不是使用已弃用的内容。
编辑:
根据下面的回答,我更新了这个:
caffe::MemoryDataLayer<unsigned char> *memory_data_layer = (caffe::MemoryDataLayer<unsigned char> *)caffeNet.layer_by_name("input").get();
vector< caffe::Datum > datumVec;
datumVec.push_back(datum);
memory_data_layer->AddDatumVector(datumVec);
但是现在对 AddDatumVector 的调用出现段错误。我想知道这是否与我的 prototxt 格式有关?这是我的 prototxt 的顶部:
name: "deploy"
input: "data"
input_shape {
dim: 1
dim: 3
dim: 100
dim: 100
}
layer {
name: "conv1"
type: "Convolution"
bottom: "data"
top: "conv1"
我将这部分问题基于 this discussion关于在 prototxt 中重要的“源”字段......
最佳答案
caffe::Datum datum;
caffe::ReadImageToDatum("myImg.png", 1, imgDims[0], imgDims[1], &datum);
MemoryDataLayer<float> *memory_data_layer = (MemoryDataLayer<float> *)caffeNet->layer_by_name("data").get();
memory_data_layer->AddDatumVector(datum);
const vector< caffe::Blob< float >* > &result = caffeNet.Forward(&lossVal);
像这样的东西可能会有用。在这里,您将不得不使用 MemoryData 层作为输入层。我希望图层名称被命名为 data
。
datum
变量的使用方式可能不正确。如果我没记错的话,我想,您必须使用基准数据 vector 。
我认为这应该可以帮助您入门。
快乐酿造。 :D
关于c++ - 使用 C++ 在 CAFFE 中设置输入层,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/38637053/
// Assuming that data are on the CPU initially, and we have a blob. const Dtype* foo; Dtype* bar;
我计划使用 NYU depth v2 数据集实现一个 CNN,它可以从单个图像估计深度。通过本教程,我了解到在 Caffe 上实现处理分类问题的 CNN 很容易。我很好奇 Caffe 是否适合涉及多维
我用图像训练了一个模型。现在想将 fc-6 功能提取到 .npy 文件中。我正在使用 caffe.set_mode_gpu() 运行 caffe.Classifier 并提取特征。 而不是每帧提取和保
我通过 apt install 命令在我的 Ubuntu v18 VM 上安装了 caffe-cpu。我正在努力找出安装目录所在的位置,如果我错了请纠正我,但我相信没有安装目录。我尝试执行的 NN 模
这个问题在这里已经有了答案: how to calculate a net's FLOPs in CNN [closed] (4 个回答) 4年前关闭。 我在tensorflow tutorial看到
似乎this related PR现在已经死了,有没有解决方法可以使用 early stopping在咖啡厅?也许在 Caffe 之上使用 Python? 最佳答案 第一部分很容易手动完成:让我们监控
当我尝试在MacbookPro(El Capitan)上安装最新的caffe时,出现以下错误。怎么了?如何解决? 我在此网站上发现了一些类似的问题,不幸的是显示的修复似乎是ubuntu特有的。 先感谢
average_loss有什么用?有人可以举一个例子或用外行的术语解释吗? 最佳答案 您可以登录 caffe.proto文件。当前版本中的第 151 行对 average_loss 给出了以下注释:
我想先分别处理不同类型的数据,然后将它们融合到一个公共(public)层中。这在 Caffe 中是否可行,如果可以,最好的方法是什么? 我读过可以在同一个 prototxt 文件中定义多个数据层。但是
我正在尝试将几个底部 Blob 合并为一个顶部 Blob ,然后将其馈送到下一层。 这些 Blob 来自不同的卷积/FC层,因此它们的形状不同。 我尝试了 concat 层,但使用轴 0 或 1 时,
包 Digits 需要使用 Caffe 安装目录的位置设置环境变量。 安装Caffe的简单方法是apt-get install caffe-cuda .但是,我无法弄清楚它的安装位置。没有安装在hom
我在 Caffe 中训练过 imagenet。现在我正在尝试为我的模型和 caffe 提供的训练模型计算 ROC/AUC。我有两个问题: 1) ROC/AUC 主要用于二进制类,但我也发现在某些情况下
我正在尝试使我的 Caffe 代码适应 tensorflow。我想知道将我的 train.txt 和 test.txt 转换为适用于 tensorflow 的最佳方法是什么。 在我的 train.tx
有没有办法安装/运行修改后的 Caffe 项目,例如 SegNet或FCN-Berkley-Vision在 Windows 上? 有Microsoft-led project to bring Caf
我想用python设置一个caffe CNN,使用caffe.NetSpec()界面。虽然我看到我们可以把测试网放在 solver.prototxt , 我想写在model.prototxt具有不同的
我有一个预训练的 faster-rcnn caffemodel。我可以使用 net.params[pr][0].data 获取模型的权重。到目前为止,权重是 numpy float32 类型。我想将它
我正在做一个将 keras json 模型转换为 caffe prototxt 的项目 caffe 支持任意填充值 keras(在 tensorflow 之上)支持“相同”和“有效”值 对于 caff
我正在尝试让 CaffeOnSpark 在本地运行,并且我按照 CaffeOnSpark wiki 上的此过程进行操作:https://github.com/yahoo/CaffeOnSpark/wi
我通过caffe使用我自己的数据集训练了网络,现在我想用C++写一个分类代码。我的机器 (linux) 仅适用于 CPU! (我使用 GPU 在 VM 中训练网络)。 当我尝试“包含”特定的 Caff
我知道可以(以编程方式)使用 caffe.Netspec() 设计一个网络,基本上主要目的是编写它的 prototxt。 net = caffe.NetSpec() .. (define) .. wi
我是一名优秀的程序员,十分优秀!