- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我有这种类型的 CSV 文件:
12012;My Name is Mike. What is your's?;3;0
1522;In my opinion: It's cool; or at least not bad;4;0
21427;Hello. I like this feature!;5;1
我想将此数据放入 da pandas.DataFrame
中。但是 read_csv(sep=";")
由于第 2 行中用户生成的消息列中的分号而引发异常(在我看来:这很酷;或者至少还不错)。所有剩余的列始终具有数字数据类型。
管理这个最方便的方法是什么?
最佳答案
处理不带引号的定界符总是一件麻烦事。在这种情况下,由于已知损坏的文本被三个正确编码的列包围,我们可以恢复。 TBH,我只使用标准的 Python 阅读器并从中构建一个 DataFrame:
import csv
import pandas as pd
with open("semi.dat", "r", newline="") as fp:
reader = csv.reader(fp, delimiter=";")
rows = [x[:1] + [';'.join(x[1:-2])] + x[-2:] for x in reader]
df = pd.DataFrame(rows)
产生
0 1 2 3
0 12012 My Name is Mike. What is your's? 3 0
1 1522 In my opinion: It's cool; or at least not bad 4 0
2 21427 Hello. I like this feature! 5 1
然后我们可以立即保存它并得到正确引用的内容:
In [67]: df.to_csv("fixedsemi.dat", sep=";", header=None, index=False)
In [68]: more fixedsemi.dat
12012;My Name is Mike. What is your's?;3;0
1522;"In my opinion: It's cool; or at least not bad";4;0
21427;Hello. I like this feature!;5;1
In [69]: df2 = pd.read_csv("fixedsemi.dat", sep=";", header=None)
In [70]: df2
Out[70]:
0 1 2 3
0 12012 My Name is Mike. What is your's? 3 0
1 1522 In my opinion: It's cool; or at least not bad 4 0
2 21427 Hello. I like this feature! 5 1
关于列数据中的python pandas read_csv定界符,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/30898935/
pandas.crosstab 和 Pandas 数据透视表似乎都提供了完全相同的功能。有什么不同吗? 最佳答案 pivot_table没有 normalize争论,不幸的是。 在 crosstab
我能找到的最接近的答案似乎太复杂:How I can create an interval column in pandas? 如果我有一个如下所示的 pandas 数据框: +-------+ |
这是我用来将某一行的一列值移动到同一行的另一列的当前代码: #Move 2014/15 column ValB to column ValA df.loc[(df.Survey_year == 201
我有一个以下格式的 Pandas 数据框: df = pd.DataFrame({'a' : [0,1,2,3,4,5,6], 'b' : [-0.5, 0.0, 1.0, 1.2, 1.4,
所以我有这两个数据框,我想得到一个新的数据框,它由两个数据框的行的克罗内克积组成。正确的做法是什么? 举个例子:数据框1 c1 c2 0 10 100 1 11 110 2 12
TL;DR:在 pandas 中,如何绘制条形图以使其 x 轴刻度标签看起来像折线图? 我制作了一个间隔均匀的时间序列(每天一个项目),并且可以像这样很好地绘制它: intensity[350:450
我有以下两个时间列,“Time1”和“Time2”。我必须计算 Pandas 中的“差异”列,即 (Time2-Time1): Time1 Time2
从这个 df 去的正确方法是什么: >>> df=pd.DataFrame({'a':['jeff','bob','jill'], 'b':['bob','jeff','mike']}) >>> df
我想按周从 Pandas 框架中的列中累积计算唯一值。例如,假设我有这样的数据: df = pd.DataFrame({'user_id':[1,1,1,2,2,2],'week':[1,1,2,1,
数据透视表的表示形式看起来不像我在寻找的东西,更具体地说,结果行的顺序。 我不知道如何以正确的方式进行更改。 df示例: test_df = pd.DataFrame({'name':['name_1
我有一个数据框,如下所示。 Category Actual Predicted 1 1 1 1 0
我有一个 df,如下所示。 df: ID open_date limit 1 2020-06-03 100 1 2020-06-23 500
我有一个 df ,其中包含与唯一值关联的各种字符串。对于这些唯一值,我想删除不等于单独列表的行,最后一行除外。 下面使用 Label 中的各种字符串值与 Item 相关联.所以对于每个唯一的 Item
考虑以下具有相同名称的列的数据框(显然,这确实发生了,目前我有一个像这样的数据集!:() >>> df = pd.DataFrame({"a":range(10,15),"b":range(5,10)
我在 Pandas 中有一个 DF,它看起来像: Letters Numbers A 1 A 3 A 2 A 1 B 1 B 2
如何减去两列之间的时间并将其转换为分钟 Date Time Ordered Time Delivered 0 1/11/19 9:25:00 am 10:58:00 am
我试图理解 pandas 中的下/上百分位数计算,但有点困惑。这是它的示例代码和输出。 test = pd.Series([7, 15, 36, 39, 40, 41]) test.describe(
我有一个多索引数据框,如下所示: TQ bought HT Detailed Instru
我需要从包含值“低”,“中”或“高”的数据框列创建直方图。当我尝试执行通常的df.column.hist()时,出现以下错误。 ex3.Severity.value_counts() Out[85]:
我试图根据另一列的长度对一列进行子串,但结果集是 NaN .我究竟做错了什么? import pandas as pd df = pd.DataFrame([['abcdefghi','xyz'],
我是一名优秀的程序员,十分优秀!