gpt4 book ai didi

python - 在 Scikit 中加载自定义数据集(类似于 20 个新闻组集)以对文本文档进行分类

转载 作者:太空狗 更新时间:2023-10-29 21:34:00 28 4
gpt4 key购买 nike

我正在尝试运行 this scikit example code对于我的 Ted Talks 自定义数据集。每个目录都是一个主题,主题下是包含每个 Ted 演讲描述的文本文件。

这就是我的数据集树结构。如您所见,每个目录都是一个主题,下面是带有描述的文本文件。

Topics/
|-- Activism
| |-- 1149.txt
| |-- 1444.txt
| |-- 157.txt
| |-- 1616.txt
| |-- 1706.txt
| |-- 1718.txt
|-- Adventure
| |-- 1036.txt
| |-- 1777.txt
| |-- 2930.txt
| |-- 2968.txt
| |-- 3027.txt
| |-- 3290.txt
|-- Advertising
| |-- 3673.txt
| |-- 3685.txt
| |-- 6567.txt
| `-- 6925.txt
|-- Africa
| |-- 1045.txt
| |-- 1072.txt
| |-- 1103.txt
| |-- 1112.txt
|-- Aging
| |-- 1848.txt
| |-- 2495.txt
| |-- 2782.txt
|-- Agriculture
| |-- 3469.txt
| |-- 4140.txt
| |-- 4733.txt
| |-- 4939.txt

我将我的数据集制作成类似于 20news 组的形式,其树结构如下:

20news-18828/
|-- alt.atheism
| |-- 49960
| |-- 51060
| |-- 51119

|-- comp.graphics
| |-- 37261
| |-- 37913
| |-- 37914
| |-- 37915
| |-- 37916
| |-- 37917
| |-- 37918
|-- comp.os.ms-windows.misc
| |-- 10000
| |-- 10001
| |-- 10002
| |-- 10003
| |-- 10004
| |-- 10005

original code (98-124),这就是训练和测试数据直接从 scikit 加载的方式。

print("Loading 20 newsgroups dataset for categories:")
print(categories if categories else "all")

data_train = fetch_20newsgroups(subset='train', categories=categories,
shuffle=True, random_state=42,
remove=remove)

data_test = fetch_20newsgroups(subset='test', categories=categories,
shuffle=True, random_state=42,
remove=remove)
print('data loaded')

categories = data_train.target_names # for case categories == None
def size_mb(docs):
return sum(len(s.encode('utf-8')) for s in docs) / 1e6

data_train_size_mb = size_mb(data_train.data)
data_test_size_mb = size_mb(data_test.data)

print("%d documents - %0.3fMB (training set)" % (
len(data_train.data), data_train_size_mb))
print("%d documents - %0.3fMB (test set)" % (
len(data_test.data), data_test_size_mb))
print("%d categories" % len(categories))
print()

# split a training set and a test set
y_train, y_test = data_train.target, data_test.target

由于此数据集可与 Scikit 一起使用,因此它的标签等都是内置的。就我而言,我知道如何加载数据集 (Line 84) :

dataset = load_files('./TED_dataset/Topics/')

我不知道在那之后我应该做什么。我想知道我应该如何在训练和测试中拆分这些数据并从我的数据集中生成这些标签:

data_train.data,  data_test.data 

总而言之,我只想加载我的数据集,在此代码上无错误地运行它。我有 uploaded the dataset here对于那些可能想要看到它的人。

我已经提到了 this question其中简要介绍了测试列车的装载。我还想知道如何从我的数据集中获取 data_train.target_names。

编辑:

我尝试获取返回错误的训练和测试:

dataset = load_files('./TED_dataset/Topics/')
train, test = train_test_split(dataset, train_size = 0.8)

更新后的代码是 here .

最佳答案

我认为您正在寻找这样的东西:

In [1]: from sklearn.datasets import load_files

In [2]: from sklearn.cross_validation import train_test_split

In [3]: bunch = load_files('./Topics')

In [4]: X_train, X_test, y_train, y_test = train_test_split(bunch.data, bunch.target, test_size=.4)

# Then proceed to train your model and validate.

请注意,bunch.target 是一个整数数组,它是存储在 bunch.target_names 中的类别名称的索引。

In [14]: X_test[:2]
Out[14]:
['Psychologist Philip Zimbardo asks, "Why are boys struggling?" He shares some stats (lower graduation rates, greater worries about intimacy and relationships) and suggests a few reasons -- and challenges the TED community to think about solutions.Philip Zimbardo was the leader of the notorious 1971 Stanford Prison Experiment -- and an expert witness at Abu Ghraib. His book The Lucifer Effect explores the nature of evil; now, in his new work, he studies the nature of heroism.',
'Human growth has strained the Earth\'s resources, but as Johan Rockstrom reminds us, our advances also give us the science to recognize this and change behavior. His research has found nine "planetary boundaries" that can guide us in protecting our planet\'s many overlapping ecosystems.If Earth is a self-regulating system, it\'s clear that human activity is capable of disrupting it. Johan Rockstrom has led a team of scientists to define the nine Earth systems that need to be kept within bounds for Earth to keep itself in balance.']

In [15]: y_test[:2]
Out[15]: array([ 84, 113])

In [16]: [bunch.target_names[idx] for idx in y_test[:2]]
Out[16]: ['Education', 'Global issues']

关于python - 在 Scikit 中加载自定义数据集(类似于 20 个新闻组集)以对文本文档进行分类,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/33612296/

28 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com