gpt4 book ai didi

c++ - 哪种算法用于计算 GNU C++ 标准库的指数函数?

转载 作者:太空狗 更新时间:2023-10-29 21:33:48 25 4
gpt4 key购买 nike

请考虑std::exp在 header 中定义 cmath在 C++ 中 numerics图书馆。现在,请考虑 C++ 标准库的实现,比如 libstdc++ .

考虑到有多种算法来计算初等函数,例如arithmetic-geometric mean iteration algorithm计算指数函数和显示的其他三个函数 here ;

您能否说出用于计算 libstdc++ 中的指数函数的特定算法? ,如果可能的话?

PS:恐怕我无法确定包含 std::exp 实现的正确 tarball 或理解相关文件内容。

最佳答案

它根本不使用任何复杂的算法。请注意,std::exp 仅针对非常有限的类型定义:floatdoublelong double + 任何可转换为 double 的 Integral 类型。这使得无需执行复杂的数学运算。

目前,它使用内置的 __builtin_expf 可以从源代码中验证。这编译为对我机器上的 expf 的调用,这是对来自 glibclibm 的调用。让我们看看我们在他们的 source code 中找到了什么.当我们搜索 expf 时,我们发现它在内部调用了 __ieee754_expf,这是一个系统相关的实现。 i686 和 x86_64 都只包含一个 glibc/sysdeps/ieee754/flt-32/e_expf.c,它最终给了我们一个实现(为简洁起见,看起来是 into the sources

它基本上是 float 的 3 阶多项式近似值:

static inline uint32_t
top12 (float x)
{
return asuint (x) >> 20;
}

float
__expf (float x)
{
uint64_t ki, t;
/* double_t for better performance on targets with FLT_EVAL_METHOD==2. */
double_t kd, xd, z, r, r2, y, s;

xd = (double_t) x;
// [...] skipping fast under/overflow handling

/* x*N/Ln2 = k + r with r in [-1/2, 1/2] and int k. */
z = InvLn2N * xd;

/* Round and convert z to int, the result is in [-150*N, 128*N] and
ideally ties-to-even rule is used, otherwise the magnitude of r
can be bigger which gives larger approximation error. */
kd = roundtoint (z);
ki = converttoint (z);
r = z - kd;

/* exp(x) = 2^(k/N) * 2^(r/N) ~= s * (C0*r^3 + C1*r^2 + C2*r + 1) */
t = T[ki % N];
t += ki << (52 - EXP2F_TABLE_BITS);
s = asdouble (t);
z = C[0] * r + C[1];
r2 = r * r;
y = C[2] * r + 1;
y = z * r2 + y;
y = y * s;
return (float) y;
}

同样,对于 128 位 long double,它是一个 order 7 approximation对于 double 他们使用 more complicated algorithm我现在无法理解。

关于c++ - 哪种算法用于计算 GNU C++ 标准库的指数函数?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/49960020/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com