- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
想要将 Pandas groupby 数据帧输出到 CSV。尝试了各种 StackOverflow 解决方案,但没有奏效。
Python 3.6.1, Pandas 0.20.1
groupby 结果如下:
id month year count
week
0 9066 82 32142 895
1 7679 84 30112 749
2 8368 126 42187 872
3 11038 102 34165 976
4 8815 117 34122 767
5 10979 163 50225 1252
6 8726 142 38159 996
7 5568 63 26143 582
想要一个看起来像的 csv
week count
0 895
1 749
2 872
3 976
4 767
5 1252
6 996
7 582
当前代码:
week_grouped = df.groupby('week')
week_grouped.sum() #At this point you have the groupby result
week_grouped.to_csv('week_grouped.csv') #Can't do this - .to_csv is not a df function.
阅读 SO 解决方案:
output groupby to csv file pandas
week_grouped.drop_duplicates().to_csv('week_grouped.csv')
结果: AttributeError:无法访问“DataFrameGroupBy”对象的可调用属性“drop_duplicates”,尝试使用“apply”方法
Python pandas - writing groupby output to file
week_grouped.reset_index().to_csv('week_grouped.csv')
结果: AttributeError:“无法访问‘DataFrameGroupBy’对象的可调用属性‘reset_index’,尝试使用‘apply’方法”
最佳答案
尝试这样做:
week_grouped = df.groupby('week')
week_grouped.sum().reset_index().to_csv('week_grouped.csv')
这会将整个数据帧写入文件。如果您只需要这两列,
week_grouped = df.groupby('week')
week_grouped.sum().reset_index()[['week', 'count']].to_csv('week_grouped.csv')
这里逐行解释原代码:
# This creates a "groupby" object (not a dataframe object)
# and you store it in the week_grouped variable.
week_grouped = df.groupby('week')
# This instructs pandas to sum up all the numeric type columns in each
# group. This returns a dataframe where each row is the sum of the
# group's numeric columns. You're not storing this dataframe in your
# example.
week_grouped.sum()
# Here you're calling the to_csv method on a groupby object... but
# that object type doesn't have that method. Dataframes have that method.
# So we should store the previous line's result (a dataframe) into a variable
# and then call its to_csv method.
week_grouped.to_csv('week_grouped.csv')
# Like this:
summed_weeks = week_grouped.sum()
summed_weeks.to_csv('...')
# Or with less typing simply
week_grouped.sum().to_csv('...')
关于python - Pandas groupby 到 to_csv,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/47602097/
给定输入: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] 将数字按奇数或偶数分组,然后按小于或大于 5 分组。 预期输出: [[1, 3, 5], [2, 4], [6, 8, 10
编辑: @coldspeed、@wen-ben、@ALollz 指出了我在字符串 np.nan 中犯的新手错误。答案很好,所以我不删除这个问题来保留那些答案。 原文: 我读过这个问题/答案 What'
我试图概括我提出的问题 here . mlb 数据框看起来像 Player Position Salary Year 0 Mike Wit
我认为我不需要共享整个数据框,但基本上,这是有问题的代码行(当然,已经导入了 pandas) divstack = df[df['Competitor']=='Emma Slabach'].group
我面临下一个问题:我有组(按 ID),对于所有这些组,我需要应用以下代码:如果组内位置之间的距离在 3 米以内,则需要将它们添加在一起,因此将创建一个新组(代码如何创建我在下面显示的组)。现在,我想要
我有以下数据: ,dateTime,magnitude,occurrence,dateTime_s 1,2017-11-20 08:00:09.052260,12861,1,2017-11-20 08
我按感兴趣的列对 df 进行分组: grouped = df.groupby('columnA') 现在我只想保留至少有 5 名成员的组: grouped.filter(lambda x: len(x
数据是一个时间序列,许多成员 ID 与许多类别相关联: data_df = pd.DataFrame({'Date': ['2018-09-14 00:00:22',
选择 u.UM_TOKEN_NO 、u.UM_FULLNAME、u.SECTOR、u.department_name、t.TS_PROJECT_CODE、sum(t.TS_TOTAL_HRS) 来自
我有这两个表: +---------------+-------------+---------------------+----------+---------+ | items_ordered |
我正在使用 groupby 和 sum 快速汇总两个数据集 一个包含: sequence shares 1 100 2 200 3 50 1 2
这个问题在这里已经有了答案: list around groupby results in empty groups (3 个答案) itertools groupby object not out
我有一组行,我想按标识符的值进行分组 - 存在于每一行中 - 然后对将作为结果的组进行进一步的隔离处理。 我的数据框是这样的: In [50]: df Out[50]: groupkey b
假设您要在全局范围内销售产品,并且希望在某个主要城市的某个地方设立销售办事处。您的决定将完全基于销售数字。 这将是您的(简化的)销售数据: df={ 'Product':'Chair', 'Count
我有一个将数据分组两次的查询: var query = (from a in Context.SetA() from b in Context.SetB().Where(x => x.aId == a
我有一个这种格式的数据框: value identifier 2007-01-01 0.087085 55 2007-01-01 0.703249
这个问题在这里已经有了答案: python groupby behaviour? (3 个答案) 关闭 4 年前。 我有一个这样的列表 [u'201003', u'200403', u'200803
在 Python 中,我可以使用 itertools.groupby 将具有相同键的连续元素分组。 : >>> items = [(1, 2), (1, 5), (1, 3), (2, 9), (3,
无法翻译以下 GroupBy 查询并将引发错误:不支持客户端 GroupBy IEnumerable ids = new List { 1, 2, 3 }; var q = db.Comments.W
考虑一个 Spark DataFrame,其中只有很少的列。目标是对其执行 groupBy 操作,而不将其转换为 Pandas DataFrame。等效的 Pandas groupBy 代码如下所示:
我是一名优秀的程序员,十分优秀!