- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我正在尝试理解由 scikit ( http://scikit-learn.org/0.13/auto_examples/cluster/plot_dbscan.html) 实现的 DBSCAN 算法的示例。
我换了行
X, labels_true = make_blobs(n_samples=750, centers=centers, cluster_std=0.4)
使用 X = my_own_data
,因此我可以将自己的数据用于 DBSCAN。
现在,变量 labels_true
是 make_blobs
的第二个返回参数,用于计算结果的一些值,如下所示:
print "Homogeneity: %0.3f" % metrics.homogeneity_score(labels_true, labels)
print "Completeness: %0.3f" % metrics.completeness_score(labels_true, labels)
print "V-measure: %0.3f" % metrics.v_measure_score(labels_true, labels)
print "Adjusted Rand Index: %0.3f" % \
metrics.adjusted_rand_score(labels_true, labels)
print "Adjusted Mutual Information: %0.3f" % \
metrics.adjusted_mutual_info_score(labels_true, labels)
print ("Silhouette Coefficient: %0.3f" %
metrics.silhouette_score(D, labels, metric='precomputed'))
如何从我的数据 X
中计算出 labels_true
?在这种情况下,scikit 对 label
到底意味着什么?
感谢您的帮助!
最佳答案
labels_true
是点到标签的“真实”分配:它们实际上应该属于哪个集群。这是可用的,因为 make_blobs
知道它从哪个“blob”生成了点。
你不能为你自己的任意数据 X
得到它,除非你有某种真正的点标签(在这种情况下你无论如何都不会进行聚类)。这只是显示了在您知道真实答案的假案例中聚类的执行情况的一些度量。
关于python - 使用 python 和 scikit-learn 的 DBSCAN : What exactly are the integer labes returned by make_blobs?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/15819103/
环顾四周,我发现可以将预先计算的距离矩阵传递给 SKLearn DBSCAN .不幸的是,我不知道如何通过它进行计算。 假设我有一个包含 100 个元素的一维数组,其中只有节点的名称。然后我有一个 2
有类似的questions和图书馆,如 ELI5和 LIME .但是我找不到解决我的问题的方法。我有一组文档,我正在尝试使用 scikit-learn 的 DBSCAN 对它们进行聚类。 .首先,我正
是否要求DBSCAN及其索引具有相同的距离函数?如果不是,什么情况下需要使用不同的距离函数? Scala 代码如何创建 DBSCAN 和索引: import de.lmu.ifi.dbs.elki.a
我在scikit-learn中的DBSCAN算法上测试了我的图像集 python 模块。相似度计算还有其他选择: # Compute similarities D = distance.squaref
我正在研究学校关于异常值检测的项目。我想我会创建自己的小数据集并使用 DBSCAN 来处理它。我想我会尝试创建一个关于网站上广告点击是否作弊的数据集。以下是我要创建的数据集的详细信息。 数据集名称:作
我使用方法 dbscan::dbscan 来按位置和密度对数据进行聚类。 我的数据如下所示: str(data) 'data.frame': 4872 obs. of 3 variables: $
使用 DBSCAN, (DBSCAN(eps=epsilon, min_samples=10, algorithm='ball_tree', metric='haversine') 我已经聚集了一个纬
我正在尝试在轨迹数据集上运行 DBSCAN (sklearn.cluster)。数据集是数组(点)的数组(轨迹)的数组 数据集_测试= array([[[46.37017059, 30.954216
我正在尝试在这里实现 DBSCAN 的代码:http://en.wikipedia.org/wiki/DBSCAN 我感到困惑的部分是 expandCluster(P, NeighborPts, C,
我有以下内容: 一个数以千计的数据集 一种计算相似度的方法,但数据点本身我无法在欧几里德空间中绘制它们 我知道 DBSCAN 应该支持自定义距离度量,但我不知道如何使用它。 假设我有一个函数 def
根据我对 DBSCAN 的理解,您可以指定 epsilon,例如 100 米,并且 — 因为 DBSCAN 考虑了密度可达性 而不 direct density-reachability 寻找簇时——
我有一个包含纬度和经度对的数据框。 这是我的数据框的样子。 order_lat order_long 0 19.111841 72.910729 1 19.111342 72
有没有什么工具可以计算出 DBSCAN 算法的 minpts 和 eps 的最优值? 目前我使用sklearn库来应用DBSCAN算法 from sklearn.cluster import DBSC
我已经在 R 中实现了 DBSCAN 算法,并且我正在将集群分配与 fpc library 的 DBSCAN 实现相匹配。 .测试是在 fpc 库 dbscan 示例中给出的合成数据上完成的: n <
这个问题已经有答案了: how to do clustering when the shape of data is (x,y,z)? (1 个回答) 已关闭 4 年前。 sklearn 中是否允许通
我正在从事与聚类任务相关的任务。 DBSCAN 拟合程序产生奇怪的结果,我不明白我的错误在哪里。我简化了代码,只留下了重要的部分: clusters = pd.read_csv('cl.csv') d
我想使用聚类算法来找到大有向图的聚类,并且我也想从该图中消除噪声。因此,我正在考虑使用DBSCAN方法,因为我发现我们可以为算法提供一个距离函数来确定两个不同节点之间的距离/相似度。 我的问题是,如何
据说 DBSCAN 在边界点上不一致,取决于它首先将点分配给哪个簇。当 DBSCAN 想要将边界点分配给其中一个簇时,是否有一种变体会考虑每个簇中边界点接近的点数(eps)? 最佳答案 在这种情况下,
我正在尝试对包含超过 100 万个数据点的数据集进行聚类。一列包含文本,另一列包含与其对应的数值。我面临的问题是它被卡住并且永远不会完成。我尝试过处理大约 100,000 个较小的数据集,它运行得相当
我正在尝试将多个核心与sklearn的DBSCAN一起使用,但是当我更改 n_jobs = -1 时,运行时间似乎没有变化(按照文档的建议,使用所有处理器来运行并行作业)。我错过了什么? import
我是一名优秀的程序员,十分优秀!