gpt4 book ai didi

python - 使用 scikit-learn python 的线性 SVM 时出现 ValueError

转载 作者:太空狗 更新时间:2023-10-29 21:31:45 24 4
gpt4 key购买 nike

我目前正在研究 ODP 文档的大规模分层文本分类。提供给我的数据集是 libSVM 格式的。我正在尝试运行 python 的 scikit-learn 的线性核 SVM 来开发模型。以下是来自训练样本的样本数据:

29 9454:1 11742:1 18884:14 26840:1 35147:1 52782:1 72083:1 73244:1 78945:1 79913:1 79986:1 86710:3 117286:1 139820:1 142458:1 146315:1 151005:2 161454:3 172237:1 1091130:1 1113562:1 1133451:1 1139046:1 1157534:1 1180618:2 1182024:1 1187711:1 1194345:3 

33 2474:1 8152:1 19529:2 35038:1 48104:1 59738:1 61854:3 67943:1 74093:1 78945:1 88558:1 90848:1 97087:1 113284:16 118917:1 122375:1 124939:1

下面是我用来构建线性SVM模型的代码

from sklearn.datasets import load_svmlight_file
from sklearn import svm
X_train, y_train = load_svmlight_file("/path-to-file/train.txt")
X_test, y_test = load_svmlight_file("/path-to-file/test.txt")
clf = svm.SVC(kernel='linear')
clf.fit(X_train, y_train)
print clf.score(X_test,y_test)

运行 clf.score() 时,出现以下错误:

---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-6-b285fbfb3efe> in <module>()
1 start_time = time.time()
----> 2 print clf.score(X_test,y_test)
3 print time.time() - start_time, "seconds"

/Users/abc/anaconda/lib/python2.7/site-packages/sklearn/base.pyc in score(self, X, y)
292 """
293 from .metrics import accuracy_score
--> 294 return accuracy_score(y, self.predict(X))
295
296

/Users/abc/anaconda/lib/python2.7/site-packages/sklearn/svm/base.pyc in predict(self, X)
464 Class labels for samples in X.
465 """
--> 466 y = super(BaseSVC, self).predict(X)
467 return self.classes_.take(y.astype(np.int))
468

/Users/abc/anaconda/lib/python2.7/site-packages/sklearn/svm/base.pyc in predict(self, X)
280 y_pred : array, shape (n_samples,)
281 """
--> 282 X = self._validate_for_predict(X)
283 predict = self._sparse_predict if self._sparse else self._dense_predict
284 return predict(X)

/Users/abc/anaconda/lib/python2.7/site-packages/sklearn/svm/base.pyc in _validate_for_predict(self, X)
402 raise ValueError("X.shape[1] = %d should be equal to %d, "
403 "the number of features at training time" %
--> 404 (n_features, self.shape_fit_[1]))
405 return X
406

ValueError: X.shape[1] = 1199847 should be equal to 1199830, the number of features at training time

有人可以让我知道这段代码或我拥有的数据究竟有什么问题吗?提前致谢

下面附上X_train、y_train、X_test、y_test的值:

X_train:

  (0, 9453)         1.0
(0, 11741) 1.0
(0, 18883) 14.0
(0, 26839) 1.0
(0, 35146) 1.0
(0, 52781) 1.0
(0, 72082) 1.0
(0, 73243) 1.0
(0, 78944) 1.0
(0, 79912) 1.0
(0, 79985) 1.0
(0, 86709) 3.0
(0, 117285) 1.0
(0, 139819) 1.0
(0, 142457) 1.0
(0, 146314) 1.0
(0, 151004) 2.0
(0, 161453) 3.0
(0, 172236) 1.0
(0, 187531) 2.0
(0, 202462) 1.0
(0, 210417) 1.0
(0, 250581) 1.0
(0, 251689) 1.0
(0, 296384) 2.0
: :
(4462, 735469) 1.0
(4462, 737059) 15.0
(4462, 740127) 1.0
(4462, 743798) 1.0
(4462, 766063) 1.0
(4462, 778958) 2.0
(4462, 784004) 4.0
(4462, 837264) 2.0
(4462, 839095) 22.0
(4462, 844735) 6.0
(4462, 859721) 2.0
(4462, 875267) 1.0
(4462, 910761) 1.0
(4462, 931244) 1.0
(4462, 945069) 6.0
(4462, 948728) 1.0
(4462, 948850) 2.0
(4462, 957682) 1.0
(4462, 975170) 1.0
(4462, 989192) 1.0
(4462, 1014294) 1.0
(4462, 1042424) 1.0
(4462, 1049027) 1.0
(4462, 1072931) 1.0
(4462, 1145790) 1.0

y_train:

[  2.90000000e+01   3.30000000e+01   3.30000000e+01 ...,   1.65475000e+05
1.65518000e+05 1.65518000e+05]

X_测试:

  (0, 18573)    1.0
(0, 23501) 1.0
(0, 29954) 1.0
(0, 42112) 1.0
(0, 46402) 1.0
(0, 63041) 2.0
(0, 67942) 2.0
(0, 83522) 1.0
(0, 88413) 2.0
(0, 99454) 1.0
(0, 126041) 1.0
(0, 139819) 1.0
(0, 142678) 1.0
(0, 151004) 1.0
(0, 166351) 2.0
(0, 173794) 1.0
(0, 192162) 3.0
(0, 210417) 2.0
(0, 254468) 1.0
(0, 263895) 2.0
(0, 277567) 1.0
(0, 278419) 2.0
(0, 279181) 2.0
(0, 281319) 2.0
(0, 298898) 1.0
: :
(1857, 1100504) 3.0
(1857, 1103247) 1.0
(1857, 1105578) 1.0
(1857, 1108986) 2.0
(1857, 1118486) 1.0
(1857, 1120807) 9.0
(1857, 1129243) 2.0
(1857, 1131786) 1.0
(1857, 1134029) 2.0
(1857, 1134410) 5.0
(1857, 1134494) 1.0
(1857, 1139045) 25.0
(1857, 1142239) 3.0
(1857, 1142651) 1.0
(1857, 1144787) 1.0
(1857, 1151891) 1.0
(1857, 1152094) 1.0
(1857, 1157533) 1.0
(1857, 1159376) 1.0
(1857, 1178944) 1.0
(1857, 1181310) 2.0
(1857, 1182023) 1.0
(1857, 1187098) 1.0
(1857, 1194344) 2.0
(1857, 1195819) 9.0

y_测试:

[  2.90000000e+01   3.30000000e+01   1.56000000e+02 ...,   1.65434000e+05
1.65475000e+05 1.65518000e+05]

最佳答案

错误信息

ValueError: X.shape[1] = 1199847 should be equal to 1199830, the number of features at training time

self 解释:测试数据中的特征数量与用于训练模型的训练数据相比是不同的。也就是说,X_train.shape[1] 不等于 X_test.shape[1]

您应该检查为什么它们不相等,因为它们应该相等。

一种可能是它们作为稀疏矩阵加载,特征数量由 load_svmlight_file 推断。 .如果测试数据包含训练数据看不到的特征,则生成的 X_test 可能具有更大的维度。为避免这种情况,您可以通过传递参数 n_features 来指定 load_svmlight_file 中的特征数量。

关于python - 使用 scikit-learn python 的线性 SVM 时出现 ValueError,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/22167095/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com