- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我正在尝试为 10 级图像分类任务训练一个简单的多层感知器,这是 Udacity 深度学习类(class)作业的一部分。更准确地说,任务是对从各种字体呈现的字母进行分类(该数据集称为 notMNIST)。
我最终得到的代码看起来相当简单,但无论如何我在训练期间总是得到非常低的 GPU 使用率。我用 GPU-Z 测量负载,它只显示 25-30%。
这是我当前的代码:
graph = tf.Graph()
with graph.as_default():
tf.set_random_seed(52)
# dataset definition
dataset = Dataset.from_tensor_slices({'x': train_data, 'y': train_labels})
dataset = dataset.shuffle(buffer_size=20000)
dataset = dataset.batch(128)
iterator = dataset.make_initializable_iterator()
sample = iterator.get_next()
x = sample['x']
y = sample['y']
# actual computation graph
keep_prob = tf.placeholder(tf.float32)
is_training = tf.placeholder(tf.bool, name='is_training')
fc1 = dense_batch_relu_dropout(x, 1024, is_training, keep_prob, 'fc1')
fc2 = dense_batch_relu_dropout(fc1, 300, is_training, keep_prob, 'fc2')
fc3 = dense_batch_relu_dropout(fc2, 50, is_training, keep_prob, 'fc3')
logits = dense(fc3, NUM_CLASSES, 'logits')
with tf.name_scope('accuracy'):
accuracy = tf.reduce_mean(
tf.cast(tf.equal(tf.argmax(y, 1), tf.argmax(logits, 1)), tf.float32),
)
accuracy_percent = 100 * accuracy
with tf.name_scope('loss'):
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=y))
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(update_ops):
# ensures that we execute the update_ops before performing the train_op
# needed for batch normalization (apparently)
train_op = tf.train.AdamOptimizer(learning_rate=1e-3, epsilon=1e-3).minimize(loss)
with tf.Session(graph=graph) as sess:
tf.global_variables_initializer().run()
step = 0
epoch = 0
while True:
sess.run(iterator.initializer, feed_dict={})
while True:
step += 1
try:
sess.run(train_op, feed_dict={keep_prob: 0.5, is_training: True})
except tf.errors.OutOfRangeError:
logger.info('End of epoch #%d', epoch)
break
# end of epoch
train_l, train_ac = sess.run(
[loss, accuracy_percent],
feed_dict={x: train_data, y: train_labels, keep_prob: 1, is_training: False},
)
test_l, test_ac = sess.run(
[loss, accuracy_percent],
feed_dict={x: test_data, y: test_labels, keep_prob: 1, is_training: False},
)
logger.info('Train loss: %f, train accuracy: %.2f%%', train_l, train_ac)
logger.info('Test loss: %f, test accuracy: %.2f%%', test_l, test_ac)
epoch += 1
到目前为止,这是我尝试过的:
我将输入管道从简单的 feed_dict
更改为 tensorflow.contrib.data.Dataset
。据我了解,它应该负责输入的效率,例如在单独的线程中加载数据。所以不应该有任何与输入相关的瓶颈。
我按照此处的建议收集了痕迹:https://github.com/tensorflow/tensorflow/issues/1824#issuecomment-225754659然而,这些痕迹并没有真正显示出任何有趣的东西。 >90% 的训练步骤是矩阵运算。
更改了批量大小。当我将它从 128 更改为 512 时,负载从 ~30% 增加到 ~38%,当我将它进一步增加到 2048 时,负载增加到 ~45%。我有 6Gb GPU 内存,数据集是单 channel 28x28 图像。我真的应该使用这么大的批量吗?我应该进一步增加它吗?
一般来说,我是否应该担心低负荷,这真的是我训练效率低下的标志吗?
这是 GPU-Z 屏幕截图,批处理中有 128 张图像。当我在每个纪元后测量整个数据集的准确度时,您会看到低负载偶尔会达到 100% 的峰值。
最佳答案
MNIST 规模的网络很小,很难为它们实现高 GPU(或 CPU)效率,我认为 30% 对于您的应用程序来说并不罕见。您将获得更高的计算效率和更大的批量大小,这意味着您每秒可以处理更多的示例,但您也会获得更低的统计效率,这意味着您需要处理更多的示例才能达到目标准确性。所以这是一个权衡。对于像您这样的小角色模型,统计效率在 100 后下降得非常快,因此可能不值得尝试增加批处理大小来进行训练。对于推理,您应该使用尽可能大的批量大小。
关于python - Tensorflow 训练期间 GPU 使用率非常低,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/46146757/
谁能解释或指出在多 GPU/多显示器设置中渲染如何工作的解释(或至少一些线索)? 例如,我安装了 5 个 NVIDIA Quadro 4000 视频卡并连接了 9 个显示器。显示不进行任何分组。刚刚在
以下代码报错: import spacy spacy.require_gpu() Traceback (most recent call last): File "/home/user/Pycha
正如问题已经暗示的那样,我是深度学习的新手。我知道模型的学习过程在没有 GPU 的情况下会很慢。如果我愿意等待,如果我只使用CPU可以吗? 最佳答案 在计算深度学习(以及一般的神经网络)中执行的许多操
我知道 Renderscript 的设计是为了掩盖我正在运行的处理器的事实,但是有没有办法编写代码,以便在支持 GPU 计算的设备(目前是 Nexus 10)上运行显卡?有什么方法可以判断脚本的功能正
关闭。这个问题是opinion-based 。目前不接受答案。 想要改进这个问题吗?更新问题,以便 editing this post 可以用事实和引文来回答它。 . 已关闭 8 年前。 Improv
我想以编程方式找出可用的 GPU 及其当前内存使用情况,并根据内存可用性使用其中一个 GPU。我想在 PyTorch 中执行此操作。 我在这个 post 中看到了以下解决方案: import torc
我喜欢 GPU Gems 的结构化技术摘要。但是自上次发布以来已经过去了很长时间,应该开发新算法来处理新型硬件。 我可以阅读有关最近 GPU 技术成就的哪些信息? 潜伏在编程板上是唯一的方法吗? 最佳
我一直在做一些关于测量数据传输延迟的实验 CPU->GPU 和 GPU->CPU。我发现对于特定消息大小,CPU->GPU 数据传输速率几乎是 GPU->CPU 传输速率的两倍。谁能解释我为什么会这样
当我使用选项 --gres=gpu:1 向具有两个 GPU 的节点提交 SLURM 作业时,如何获取为该作业分配的 GPU ID?是否有用于此目的的环境变量?我使用的 GPU 都是 nvidia GP
我用 gpu、cuda 7.0 和 cudnn 6.5 安装了 tensorflow。当我导入 tensorflow 时,它运行良好。 我正在尝试在 Tensorflow 上运行一个简单的矩阵乘法,但
我们正在寻找有关 slurm salloc gpu 分配的一些建议。目前,给定: % salloc -n 4 -c 2 -gres=gpu:1 % srun env | grep CUDA CUD
我是否必须自定义为非 GPU Tensorflow 库编写的代码以适应tensorflow-gpu 库? 我有一个 GPU,想运行仅为非 GPU tensorflow 库编写的 Python 代码。我
我是否必须自定义为非 GPU Tensorflow 库编写的代码以适应tensorflow-gpu 库? 我有一个 GPU,想运行仅为非 GPU tensorflow 库编写的 Python 代码。我
我正在使用 pytorch 框架训练网络。我的电脑里有 K40 GPU。上周,我在同一台计算机上添加了 1080。 在我的第一个实验中,我在两个 GPU 上观察到相同的结果。然后,我在两个 GPU 上
有没有办法在 Slurm 上超额订阅 GPU,即运行共享一个 GPU 的多个作业/作业步骤?我们只找到了超额订阅 CPU 和内存的方法,但没有找到 GPU。 我们希望在同一 GPU 上并行运行多个作业
我可以访问 4 个 GPU(不是 root 用户)。其中一个 GPU(2 号)表现怪异,它们的一些内存被阻塞但功耗和温度非常低(好像没有任何东西在上面运行)。请参阅下图中 nvidia-smi 的详细
我正在尝试通过 Tensorflow 运行示例 seq2seq,但它不会使用 GPU。以下是我在带有 Tesla K20x 的 Linux 系统上安装 Tensorflow 所采取的步骤 git cl
一位电气工程师最近提醒我不要使用 GPU 进行科学计算(例如,在精度非常重要的地方),因为没有像 CPU 那样的硬件保护措施。这是真的吗?如果是的话,典型硬件中的问题有多普遍/严重? 最佳答案 实际上
关闭。这个问题不满足Stack Overflow guidelines .它目前不接受答案。 想改善这个问题吗?更新问题,使其成为 on-topic对于堆栈溢出。 7年前关闭。 Improve thi
最近我研究了强化学习,有一个问题困扰着我,我找不到答案:如何使用 GPU 有效地完成训练?据我所知,需要与环境持续交互,这对我来说似乎是一个巨大的瓶颈,因为这项任务通常是非数学的/不可并行化的。然而,
我是一名优秀的程序员,十分优秀!