- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我有一个测试数据集和训练数据集如下。我提供了包含最少记录的样本数据,但我的数据有超过 1000 条记录。这里 E 是我的目标变量,我需要使用算法对其进行预测。它只有四个类别,如 1、2、3、4。它只能采用这些值中的任何一个。
训练数据集:
A B C D E
1 20 30 1 1
2 22 12 33 2
3 45 65 77 3
12 43 55 65 4
11 25 30 1 1
22 23 19 31 2
31 41 11 70 3
1 48 23 60 4
测试数据集:
A B C D E
11 21 12 11
1 2 3 4
5 6 7 8
99 87 65 34
11 21 24 12
由于 E 只有 4 个类别,我想到使用多项逻辑回归(1 与 Rest 逻辑)进行预测。我正在尝试使用 python 来实现它。
我知道我们需要在变量中设置这些目标并使用算法来预测这些值中的任何一个的逻辑:
output = [1,2,3,4]
但我在如何使用 python (sklearn) 来循环遍历这些值以及我应该使用什么算法来预测输出值上遇到了困难?任何帮助将不胜感激
最佳答案
你可以试试
LogisticRegression(multi_class='multinomial',solver ='newton-cg').fit(X_train,y_train)
关于 python : How to use Multinomial Logistic Regression using SKlearn,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/36760000/
在 Azure 机器学习工作室的测试项目中,根据我的理解,我有一些问题。在我的项目(在 R 中)中,我使用了二元 Logistic 回归,但在 AML 中我发现了两个 Logistic 回归:二类和多
我想估计医疗数据逻辑回归中使用的 sigmoidal/logistic 的最佳参数(在最后提到:斜率和截距)。这是我用 python 所做的: import numpy as np from skle
我在 R 中运行逻辑回归模型。我使用了 Zelig 和 Car 包。但是,我想知道是否有一种简单的方法可以获得模型的模型拟合统计数据。 (伪 R 方、卡方、对数似然等) 最佳答案 假设 glm1 is
在逻辑回归中,SAS 可以选择使用“降序”选项对 1 而不是 0 进行建模。 R 中有什么方法可以让我们做同样的事情吗? 我正在使用的代码如下: glm(y~x1+x2+x3, family=bino
作为后续 this question ,我拟合了具有定量和定性解释变量之间相互作用的多元 Logistic 回归。 MWE如下: Type |z|) (Intercept) -0.65518
我已经开始使用 Vowpal Wabbit 对于逻辑回归,但是我无法重现它给出的结果。也许它确实有一些未记录的“魔法”,但是有没有人能够复制/验证/检查逻辑回归的计算? 例如,使用下面的简单数据,我们
有没有办法像 statsmodels 一样为 scikit 逻辑回归模型提供类似的、不错的输出?有了所有的 p 值,标准。一张表中的错误等? 最佳答案 正如您和其他人所指出的,这是 scikit le
我正在使用 vowpal wabbit 进行逻辑回归。我了解到,vowpal wabbit 从给定的训练数据中选择一个保留集进行验证。这组是随机选择的吗?我有一个非常不平衡的数据集,包含 100 多个
我使用逻辑回归编写了一个多类分类器,该分类器使用一对多方法进行训练。我想绘制经过训练的分类器的学习曲线。 学习曲线应该按类别绘制,还是应该作为整个分类器的单个图?这有什么不同吗? 需要澄清的是,学习曲
在scipy.special.expit中,逻辑函数实现如下: if x < 0 a = exp(x) a / (1 + a) else 1 / (1 + exp(-x)) 但
逻辑斯蒂映射在混沌数学中是一个很经典的例子,它可以说明混沌可以从很简单的非线性方程中产生。 逻辑斯蒂映射公式如下: x_n表示当前人口与最大人口数量的比值,mu为参数,相当于人口增长速率。
我是数据科学或机器学习的新手。我尝试从 here 实现代码,但预测只返回 1 个类。 这是我的代码: classification_data = data.drop([10], axis=1).val
请帮助解释 Weka 库中由 weka.classifiers.functions.Logistic 生成的逻辑回归结果。 我使用来自 Weka 示例的数字数据: @relation weather
RSNNS 上的 CRAN 文档仅提及 Act_Logistic 作为隐藏层激活函数的示例。 RSNNS 中是否有所有可用激活函数的列表? 我专门寻找双曲正切函数的语法。 最佳答案 是的,大多数(全部
我正在使用 scikit-learn 的 linear_model.LogisticRegression 来执行多项逻辑回归。我想初始化求解器的种子值,即我想给求解器它的初始猜测作为系数的值。 有谁知
glmnet 中有没有办法进行一阶交互? 例如,如果我的 X 矩阵是: V1 V2 V3 0 1 0 1 0 1 1 0 0 ... 有没有办法指定它在不手动创建列的情况下按照 `y
我目前有一个程序,它采用特征向量和分类,并将其应用于已知的权重 vector ,以使用逻辑回归生成损失梯度。这是代码: double[] grad = new double[featureSize];
我正在关注 Siraj Raval 关于使用梯度下降的逻辑回归的视频: 1) 较长视频的链接: https://www.youtube.com/watch?v=XdM6ER7zTLk&t=2686s
我目前正在学习机器学习,但没有统计学背景。无论我在哪里看到物流功能,它总是: wx + b 但是this example in Theano documentation使用: wx - b 请问是哪一
我正在编写一些基本的神经网络方法 - 特别是激活函数 - 并且已经达到了我垃圾数学知识的极限。我理解各自的范围(-1/1)(0/1)等,但不同的描述和实现让我感到困惑。 具体来说,sigmoid、lo
我是一名优秀的程序员,十分优秀!