gpt4 book ai didi

python - 如何在keras中指定相关系数作为损失函数

转载 作者:太空狗 更新时间:2023-10-29 21:19:15 25 4
gpt4 key购买 nike

我是第一次使用keras+tensorflow。我想指定 correlation coefficient作为损失函数。对其进行平方是有意义的,因此它是一个介于 0 和 1 之间的数字,其中 0 是坏的,1 是好的。

我的基本代码目前是这样的:

def baseline_model():
model = Sequential()
model.add(Dense(4000, input_dim=n**2, kernel_initializer='normal', activation='relu'))
model.add(Dense(1, kernel_initializer='normal'))
# Compile model
model.compile(loss='mean_squared_error', optimizer='adam')
return model

estimators = []
estimators.append(('standardize', StandardScaler()))
estimators.append(('mlp', KerasRegressor(build_fn=baseline_model, epochs=100, batch_size=32, verbose=2)))
pipeline = Pipeline(estimators)
kfold = KFold(n_splits=10, random_state=0)
results = cross_val_score(pipeline, X, Y, cv=kfold)
print("Standardized: %.2f (%.2f) MSE" % (results.mean(), results.std()))

我如何更改此设置以使其优化以最小化平方相关系数?


我尝试了以下方法:

def correlation_coefficient(y_true, y_pred):
pearson_r, _ = tf.contrib.metrics.streaming_pearson_correlation(y_pred, y_true)
return 1-pearson_r**2

def baseline_model():
# create model
model = Sequential()
model.add(Dense(4000, input_dim=n**2, kernel_initializer='normal', activation='relu'))
# model.add(Dense(2000, kernel_initializer='normal', activation='relu'))
model.add(Dense(1, kernel_initializer='normal'))
# Compile model
model.compile(loss=correlation_coefficient, optimizer='adam')
return model

但这会崩溃:

Traceback (most recent call last):
File "deeplearning-det.py", line 67, in <module>
results = cross_val_score(pipeline, X, Y, cv=kfold)
File "/home/user/.local/lib/python3.5/site-packages/sklearn/model_selection/_validation.py", line 321, in cross_val_score
pre_dispatch=pre_dispatch)
File "/home/user/.local/lib/python3.5/site-packages/sklearn/model_selection/_validation.py", line 195, in cross_validate
for train, test in cv.split(X, y, groups))
File "/home/user/.local/lib/python3.5/site-packages/sklearn/externals/joblib/parallel.py", line 779, in __call__
while self.dispatch_one_batch(iterator):
File "/home/user/.local/lib/python3.5/site-packages/sklearn/externals/joblib/parallel.py", line 625, in dispatch_one_batch
self._dispatch(tasks)
File "/home/user/.local/lib/python3.5/site-packages/sklearn/externals/joblib/parallel.py", line 588, in _dispatch
job = self._backend.apply_async(batch, callback=cb)
File "/home/user/.local/lib/python3.5/site-packages/sklearn/externals/joblib/_parallel_backends.py", line 111, in apply_async
result = ImmediateResult(func)
File "/home/user/.local/lib/python3.5/site-packages/sklearn/externals/joblib/_parallel_backends.py", line 332, in __init__
self.results = batch()
File "/home/user/.local/lib/python3.5/site-packages/sklearn/externals/joblib/parallel.py", line 131, in __call__
return [func(*args, **kwargs) for func, args, kwargs in self.items]
File "/home/user/.local/lib/python3.5/site-packages/sklearn/externals/joblib/parallel.py", line 131, in <listcomp>
return [func(*args, **kwargs) for func, args, kwargs in self.items]
File "/home/user/.local/lib/python3.5/site-packages/sklearn/model_selection/_validation.py", line 437, in _fit_and_score
estimator.fit(X_train, y_train, **fit_params)
File "/home/user/.local/lib/python3.5/site-packages/sklearn/pipeline.py", line 259, in fit
self._final_estimator.fit(Xt, y, **fit_params)
File "/home/user/.local/lib/python3.5/site-packages/keras/wrappers/scikit_learn.py", line 147, in fit
history = self.model.fit(x, y, **fit_args)
File "/home/user/.local/lib/python3.5/site-packages/keras/models.py", line 867, in fit
initial_epoch=initial_epoch)
File "/home/user/.local/lib/python3.5/site-packages/keras/engine/training.py", line 1575, in fit
self._make_train_function()
File "/home/user/.local/lib/python3.5/site-packages/keras/engine/training.py", line 960, in _make_train_function
loss=self.total_loss)
File "/home/user/.local/lib/python3.5/site-packages/keras/legacy/interfaces.py", line 87, in wrapper
return func(*args, **kwargs)
File "/home/user/.local/lib/python3.5/site-packages/keras/optimizers.py", line 432, in get_updates
m_t = (self.beta_1 * m) + (1. - self.beta_1) * g
File "/home/user/.local/lib/python3.5/site-packages/tensorflow/python/ops/math_ops.py", line 856, in binary_op_wrapper
y = ops.convert_to_tensor(y, dtype=x.dtype.base_dtype, name="y")
File "/home/user/.local/lib/python3.5/site-packages/tensorflow/python/framework/ops.py", line 611, in convert_to_tensor
as_ref=False)
File "/home/user/.local/lib/python3.5/site-packages/tensorflow/python/framework/ops.py", line 676, in internal_convert_to_tensor
ret = conversion_func(value, dtype=dtype, name=name, as_ref=as_ref)
File "/home/user/.local/lib/python3.5/site-packages/tensorflow/python/framework/constant_op.py", line 121, in _constant_tensor_conversion_function
return constant(v, dtype=dtype, name=name)
File "/home/user/.local/lib/python3.5/site-packages/tensorflow/python/framework/constant_op.py", line 102, in constant
tensor_util.make_tensor_proto(value, dtype=dtype, shape=shape, verify_shape=verify_shape))
File "/home/user/.local/lib/python3.5/site-packages/tensorflow/python/framework/tensor_util.py", line 364, in make_tensor_proto
raise ValueError("None values not supported.")
ValueError: None values not supported.

更新 1

按照下面的答案,代码现在可以运行。不幸的是,correlation_coefficientcorrelation_coefficient_loss 函数给出了彼此不同的值,我不确定它们中的任何一个是否与您从 1- scipy.stats.pearsonr 得到的相同。 ()[0]**2。

Why are loss functions giving the wrong outputs and how can they be corrected to give the same values as 1 -
scipy.stats.pearsonr()[0]**2
would give?

这是应该运行的完全独立的代码:

import numpy as np
import sys
import math
from scipy.stats import ortho_group
from scipy.stats import pearsonr
import matplotlib.pyplot as plt
from keras.models import Sequential
from keras.layers import Dense
from keras.wrappers.scikit_learn import KerasRegressor
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
import tensorflow as tf
from keras import backend as K


def permanent(M):
n = M.shape[0]
d = np.ones(n)
j = 0
s = 1
f = np.arange(n)
v = M.sum(axis=0)
p = np.prod(v)
while (j < n-1):
v -= 2*d[j]*M[j]
d[j] = -d[j]
s = -s
prod = np.prod(v)
p += s*prod
f[0] = 0
f[j] = f[j+1]
f[j+1] = j+1
j = f[0]
return p/2**(n-1)


def correlation_coefficient_loss(y_true, y_pred):
x = y_true
y = y_pred
mx = K.mean(x)
my = K.mean(y)
xm, ym = x-mx, y-my
r_num = K.sum(xm * ym)
r_den = K.sum(K.sum(K.square(xm)) * K.sum(K.square(ym)))
r = r_num / r_den
return 1 - r**2


def correlation_coefficient(y_true, y_pred):
pearson_r, update_op = tf.contrib.metrics.streaming_pearson_correlation(y_pred, y_true)
# find all variables created for this metric
metric_vars = [i for i in tf.local_variables() if 'correlation_coefficient' in i.name.split('/')[1]]

# Add metric variables to GLOBAL_VARIABLES collection.
# They will be initialized for new session.
for v in metric_vars:
tf.add_to_collection(tf.GraphKeys.GLOBAL_VARIABLES, v)

# force to update metric values
with tf.control_dependencies([update_op]):
pearson_r = tf.identity(pearson_r)
return 1-pearson_r**2


def baseline_model():
# create model
model = Sequential()
model.add(Dense(4000, input_dim=no_rows**2, kernel_initializer='normal', activation='relu'))
# model.add(Dense(2000, kernel_initializer='normal', activation='relu'))
model.add(Dense(1, kernel_initializer='normal'))
# Compile model
model.compile(loss=correlation_coefficient_loss, optimizer='adam', metrics=[correlation_coefficient])
return model


no_rows = 8

print("Making the input data using seed 7", file=sys.stderr)
np.random.seed(7)
U = ortho_group.rvs(no_rows**2)
U = U[:, :no_rows]
# U is a random orthogonal matrix
X = []
Y = []
print(U)
for i in range(40000):
I = np.random.choice(no_rows**2, size = no_rows)
A = U[I][np.lexsort(np.rot90(U[I]))]
X.append(A.ravel())
Y.append(-math.log(permanent(A)**2, 2))

X = np.array(X)
Y = np.array(Y)

estimators = []
estimators.append(('standardize', StandardScaler()))
estimators.append(('mlp', KerasRegressor(build_fn=baseline_model, epochs=100, batch_size=32, verbose=2)))
pipeline = Pipeline(estimators)
X_train, X_test, y_train, y_test = train_test_split(X, Y,
train_size=0.75, test_size=0.25)
pipeline.fit(X_train, y_train)

更新 2

我已经放弃了 correlation_coefficient 函数,现在只使用下面 JulioDanielReyes 给出的 correlation_coefficient_loss 函数。然而,要么这仍然是错误的,要么 keras 严重过度拟合。即使我有:

def baseline_model():
model = Sequential()
model.add(Dense(40, input_dim=no_rows**2, kernel_initializer='normal', activation='relu'))
model.add(Dense(1, kernel_initializer='normal'))
model.compile(loss=correlation_coefficient_loss, optimizer='adam', metrics=[correlation_coefficient_loss])
return model

例如,在 100 个时期后我损失了 0.6653,但在测试训练模型时损失了 0.857。

How can it be overfitting which such a tiny number of nodes in the hidden layer?

最佳答案

根据 keras documentation ,您应该将平方相关系数作为函数而不是字符串 'mean_squared_error' 传递。

该函数需要接收 2 个张量 (y_true, y_pred)。可以看看keras source code寻找灵感。

还有一个函数tf.contrib.metrics.streaming_pearson_correlation在tensorflow上实现。请注意参数的顺序,它应该是这样的:

更新1:根据这个初始化局部变量issue

import tensorflow as tf
def correlation_coefficient(y_true, y_pred):
pearson_r, update_op = tf.contrib.metrics.streaming_pearson_correlation(y_pred, y_true, name='pearson_r'
# find all variables created for this metric
metric_vars = [i for i in tf.local_variables() if 'pearson_r' in i.name.split('/')]

# Add metric variables to GLOBAL_VARIABLES collection.
# They will be initialized for new session.
for v in metric_vars:
tf.add_to_collection(tf.GraphKeys.GLOBAL_VARIABLES, v)

# force to update metric values
with tf.control_dependencies([update_op]):
pearson_r = tf.identity(pearson_r)
return 1-pearson_r**2

...

model.compile(loss=correlation_coefficient, optimizer='adam')

更新 2:即使您不能直接使用 scipy 函数,您也可以查看 implementation并使用 keras backend 将其移植到您的代码中.

更新 3:tensorflow 函数本身可能不可微,您的损失函数需要是这样的:(请检查数学)

from keras import backend as K
def correlation_coefficient_loss(y_true, y_pred):
x = y_true
y = y_pred
mx = K.mean(x)
my = K.mean(y)
xm, ym = x-mx, y-my
r_num = K.sum(tf.multiply(xm,ym))
r_den = K.sqrt(tf.multiply(K.sum(K.square(xm)), K.sum(K.square(ym))))
r = r_num / r_den

r = K.maximum(K.minimum(r, 1.0), -1.0)
return 1 - K.square(r)

更新 4:两个函数的结果不同,但 correlation_coefficient_loss 给出与 scipy.stats.pearsonr 相同的结果:这是测试它的代码:

import tensorflow as tf
from keras import backend as K
import numpy as np
import scipy.stats

inputa = np.array([[3,1,2,3,4,5],
[1,2,3,4,5,6],
[1,2,3,4,5,6]])
inputb = np.array([[3,1,2,3,4,5],
[3,1,2,3,4,5],
[6,5,4,3,2,1]])

with tf.Session() as sess:
a = tf.placeholder(tf.float32, shape=[None])
b = tf.placeholder(tf.float32, shape=[None])
f1 = correlation_coefficient(a, b)
f2 = correlation_coefficient_loss(a, b)

sess.run(tf.global_variables_initializer())

for i in range(inputa.shape[0]):

f1_result, f2_result = sess.run([f1, f2], feed_dict={a: inputa[i], b: inputb[i]})
scipy_result =1- scipy.stats.pearsonr(inputa[i], inputb[i])[0]**2
print("a: "+ str(inputa[i]) + " b: " + str(inputb[i]))
print("correlation_coefficient: " + str(f1_result))
print("correlation_coefficient_loss: " + str(f2_result))
print("scipy.stats.pearsonr:" + str(scipy_result))

结果:

a: [3 1 2 3 4 5] b: [3 1 2 3 4 5]
correlation_coefficient: -2.38419e-07
correlation_coefficient_loss: 0.0
scipy.stats.pearsonr:0.0
a: [1 2 3 4 5 6] b: [3 1 2 3 4 5]
correlation_coefficient: 0.292036
correlation_coefficient_loss: 0.428571
scipy.stats.pearsonr:0.428571428571
a: [1 2 3 4 5 6] b: [6 5 4 3 2 1]
correlation_coefficient: 0.994918
correlation_coefficient_loss: 0.0
scipy.stats.pearsonr:0.0

关于python - 如何在keras中指定相关系数作为损失函数,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/46619869/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com