- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我使用这段代码在 python 中实现了一个高通滤波器:
from scipy.signal import butter, filtfilt
import numpy as np
def butter_highpass(cutoff, fs, order=5):
nyq = 0.5 * fs
normal_cutoff = cutoff / nyq
b, a = butter(order, normal_cutoff, btype='high', analog=False)
return b, a
def butter_highpass_filter(data, cutoff, fs, order=5):
b, a = butter_highpass(cutoff, fs, order=order)
y = filtfilt(b, a, data)
return y
rawdata = np.loadtxt('sampleSignal.txt', skiprows=0)
signal = rawdata
fs = 100000.0
cutoff = 100
order = 6
conditioned_signal = butter_highpass_filter(signal, cutoff, fs, order)
我将此滤波器应用于 100 kHz 电压信号,它适用于 >= 60 Hz 的截止频率。但它在下面不起作用。我想切断所有低于 10 Hz 的频率。任何提示我的错误在哪里?我观察到的是滤波器的阶数越低,截止频率就越低。
最佳答案
希望对您有所帮助
import numpy as np
import pandas as pd
from scipy import signal
import matplotlib.pyplot as plt
def sine_generator(fs, sinefreq, duration):
T = duration
nsamples = fs * T
w = 2. * np.pi * sinefreq
t_sine = np.linspace(0, T, nsamples, endpoint=False)
y_sine = np.sin(w * t_sine)
result = pd.DataFrame({
'data' : y_sine} ,index=t_sine)
return result
def butter_highpass(cutoff, fs, order=5):
nyq = 0.5 * fs
normal_cutoff = cutoff / nyq
b, a = signal.butter(order, normal_cutoff, btype='high', analog=False)
return b, a
def butter_highpass_filter(data, cutoff, fs, order=5):
b, a = butter_highpass(cutoff, fs, order=order)
y = signal.filtfilt(b, a, data)
return y
fps = 30
sine_fq = 10 #Hz
duration = 10 #seconds
sine_5Hz = sine_generator(fps,sine_fq,duration)
sine_fq = 1 #Hz
duration = 10 #seconds
sine_1Hz = sine_generator(fps,sine_fq,duration)
sine = sine_5Hz + sine_1Hz
filtered_sine = butter_highpass_filter(sine.data,10,fps)
plt.figure(figsize=(20,10))
plt.subplot(211)
plt.plot(range(len(sine)),sine)
plt.title('generated signal')
plt.subplot(212)
plt.plot(range(len(filtered_sine)),filtered_sine)
plt.title('filtered signal')
plt.show()
关于Python 高通滤波器,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/39032325/
所以我试图增强我的图像的对比度,我发现一位绅士通过在线 Gamma 校正来做到这一点,代码如下: (im/255).^0.45*255 据我了解,1/gammavalue = 0.45,其中 gamm
我有一个包含简单时间序列数据的向量(从 deSolve 矩阵中提取),用于测试目的可以是: x x r for (n in 2:length(x)) r[n] (r) [1] NA 1 1
我有这段实现 Prewitt 边缘检测的代码。我需要做的是只用一个缓冲区来实现它,也就是说,我不会创建图像的拷贝,而是编辑原始图像。所以如果我想改变值 78 的像素,我不能把新值,例如100,直到所有
我想制作一个 FIR 滤波器。我有一个系数数组 (buffer[size]) 和一个数据数组 (filter[size_filter])。我必须在两个数组之间进行卷积: for(j = 0;j < s
我正在尝试制作 IIR 滤波器。我做了FIR滤波器,但是我觉得IIR比FIR难。 我认为 IIR 与 FIR 类似,但它让我感到困惑。 我觉得过滤器是这样的 FIR : y(n) = b0(x[n])
我想在 Python 中通过窗口创建一个基本的高通 FIR 滤波器。 我的代码在下面并且是故意惯用的 - 我知道你可以(很可能)用 Python 中的一行代码完成它,但我正在学习。我使用了一个带有矩形
我正在尝试用树莓派创建一个相机来检测在走廊中移动的人(这里我假设只有移动的东西是人),并识别那些在该区域花费太多时间的人(使用计时器),我使用背景减法来检测运动并尝试使用基于相关性的跟踪器(例如 MO
我正在研究用于特征提取的超像素。我已经成功地将超像素功能应用于图像。 A = imread('kobi.png'); [L,N] = superpixels(A,5); figure BW = bou
你好 我需要在应用中使用这个 Kolmogorov 过滤器。您将一些测量数据放入其中,并使用过滤器对其进行一些平滑处理。我试着用“nchoosek”来做,但是当我尝试为 50 或更多的 I 做这件事时
我正在尝试在具有静态掩码 5x5 并在 applyFilter() 函数中进行卷积编码的图像上实现 LoG 过滤器。然而,无论我使用什么面具,我都会得到奇怪的结果。保存图像而不通过函数传递它是有效的,
我已经在 Haskell 中实现了一个 FIR 滤波器。我不太了解 FIR 滤波器,我的代码很大程度上基于现有的 C# 实现。因此,我觉得我的实现有太多的 C# 风格,而不是真正的 Haskell 风
我需要制作一个简单的带通音频滤波器。现在我使用了这个简单的 C++ 类:http://www.cardinalpeak.com/blog/a-c-class-to-implement-low-pass
CUDA NPP 库支持使用 nppiFilter_8u_C1R 命令过滤图像,但不断出现错误。我可以毫无问题地启动并运行 boxFilterNPP 示例代码。 eStatusNPP = nppiFi
我是 OpenCV 和 gabor 过滤器的新手,只想获得这样的 gabor 小波: 我在 Java 中使用这个 OpenCV 代码: double sigma_bar = 40; double th
我正在使用 FIR 滤波器对音频进行过采样。这是一个简单的典型窗口 sinc,即一个被截断和窗口化的 sinc 函数。像往常一样,它需要过去和“ future ”的样本才能工作。实际上,这意味着音频输
目前我正在尝试实现 FIR 低通滤波器。 FIR 系数在 MATLAB 中计算。现在我需要用 C++ 实现 FIR 算法。 我将一个类定义为过滤器,将 FIR 的一个函数定义为: double * F
我有一个用 C 语言实现 FIR 滤波器的家庭作业,我想知道您是否认为我理解正确。我认为解决问题的程序是: #include float FIRfloats[5]; void floatFIR(fl
我希望对图像的每条水平线应用频域滤波器,例如低通或带通。这可能使用 opencv 吗? 最佳答案 我认为您需要详细说明您的问题。也许,举一些具体的例子。 如果我将您的问题解释为: 你有一张 10 x
我的问题与 A. Levy 的解释相关: Analyze audio using Fast Fourier Transform 如何在这些复数上生成带通滤波器... [-636.00000000 +0
FIR 滤波器有一个算法,但它是 float : FIR filter implementation in C programming 如果我想要一个符合此规范的定点算法,我该怎么做? the FIR
我是一名优秀的程序员,十分优秀!