- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
假设我有一个在 6 维空间中给出的点云,我可以根据需要使其变得尽可能密集。这些点原来位于低维多面体的表面上(即点向量 (x1, x2, ... x6) 似乎是共面的)。
我想找到这个未知多胞形的顶点,我目前的尝试是通过 Python 中的 scipy 接口(interface)使用 qhull 算法。一开始我只会收到错误消息,显然是由低维输入和/或许多退化点引起的。我尝试了几种强力方法来消除退化点,但不是很成功,所以最后我认为所有这些点都必须位于凸包上。
This question 非常有帮助,因为它建议通过主成分分析进行降维。如果我将这些点投影到 4D 超平面,则 qhull 算法运行时不会出现错误(对于任何更高的维度,它都不会运行)。
from scipy.spatial import ConvexHull
from sklearn.decomposition import PCA
model = PCA(n_components=4).fit(initial_points)
proj_points = model.transform(initial_points)
hull = ConvexHull(proj_points, qhull_options = "Qx")
上述问题的答案中提到,在计算投影点的凸包后,需要将单纯形转换回来。但是 qhull 输出仅包含索引,为什么这些与初始点的索引不匹配?
现在我的问题是我不知道使用哪个精度来实际获得正确的顶点。无论我制作点云的密度如何,获得的顶点都具有不同的精度。例如,对于 (10000, 6) 数组中的初始点,我得到(其中 E0.03 是它适用的最大值):
hull1 = ConvexHull(proj_points, qhull_options = "Qx, E0.03")
print len(hull1.vertices)
print hull1.vertices
5
[ 437 2116 3978 7519 9381]
并将其绘制在轴 0、1、2 的一些(不是非常有用的)投影中(其中蓝色点代表初始点云的选择):
但是为了更高的精度(当然)我得到了不同的集合:
hull2 = ConvexHull(proj_points, qhull_options = "Qx, E0.003")
print len(hull2.vertices)
print hull2.vertices
29
[ 74 75 436 437 756 1117 2116 2366 2618 2937 3297 3615 3616 3978 3979
4340 4561 4657 4659 4924 5338 5797 6336 7519 7882 8200 9381 9427 9470]
相同的投影(只是角度略有不同):
我怀疑第一张图片没有足够的顶点而第二张图片可能有太多。当然,我无法从这些图中提取严格的信息。但是有没有一种好方法可以找出要使用的精度?或者也许是一个完全不同的方法来解决这个问题(我已经尝试了一些)?
最佳答案
在这个答案中,我假设您已经使用 PCA 将数据近乎无损地压缩为 4 维数据,其中缩减后的数据位于概念上面较少的 4 维多胞形中。我将描述一种解决此多胞体的面的方法,这反过来会为您提供顶点。
令 R4 中的 xi, i = 1, ..., m 为 PCA 缩减的数据点。
设 F = (a, b) 是一张脸,其中 a 在 R4 中,a • a = 1,b 在 R 中。
我们定义人脸损失函数 L 如下,其中 λ+, λ-> 0 是您选择的参数。 λ+ 应该是一个非常小的正数。 λ- 应该是一个非常大的正数。
L(F) = sumi(λ+ • max(0, a • xi + b) - λ- • min(0, a • xi + b))
我们想找到关于损失函数 L 的最小面 F。所有最小面的小集合将描述您的多面体。您可以通过随机初始化 F 然后使用偏导数 ∂L/∂aj、j = 1、2、3、4 和 ∂L/∂b 执行梯度下降来求解最小面。在梯度下降的每一步,通过归一化约束a•a为1。
∂L/∂aj = sumi(λ+ • xj • [a • xi + b > 0] - λ- • xj • [a • xi + b < 0]) 对于 j = 1, 2, 3, 4
∂L/∂b = sumi(λ+ • [a • xi + b > 0] - λ- • [a • xi + b < 0])
备注Iverson brackets : 如果 P 为真,[P] = 1,如果 P 为假,则 [P] = 0。
关于python - 更高维度的凸包,找到多面体的顶点,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/27889591/
通过终端,您可以使用命令 - “SetFile -a B 文件名” 以编程方式,我认为我应该通过[[NSFileManager defaultManager] createDirectoryAtPat
嗨,正在尝试书中的一些示例:Practical Graph mining with R对于子图挖掘: library(subgraphMining) library(igraph) graph1 =
代码中的相同问题: class Foo { int getIntProperty () { ... } CustomObject getObjectProperty () { ... }
所以这可能是一个愚蠢的问题,但它已经困扰我一段时间了。 使用 React,我创建了两个组件(Buttons.js 和 Message.js),每个组件都有一个导出。但是,现在我希望将这两个组件用作 n
从今天早上开始,我发现我无法再从某个范围安装任何 NPM 包(或任何具有依赖项的包)。例如,如果我输入 npm i webpack 我会收到以下错误... npm ERR! code E401 npm
我在这里搜索过,Angular 2, @ngtools/webpack, AOT ,但对我不起作用。我运行了 npm install 命令。我正在做的是创建一个新的 Angular 2 项目。当我运行
情况: 我有一个 Swift 包,将其命名为 lib。 lib 位于其自己的存储库中。在lib的仓库中,有一堆本地包;也就是说,这些包是在 lib 中定义的,使用本地路径依赖格式 .package(p
我想在工作中学习和使用nodejs,但是在使用 de npm 命令安装模块/包时遇到网络问题。我是否可以使用我的家用计算机构建完整的 Node js 包,然后将其安装在另一台计算机(我的工作场所计算机
我需要将一些 .tar.bz2 格式的非 Python 包转换为 Anaconda/miniConda .egg 文件并安装它们。为此,我需要一个适用于 Windows 的 bld.bat 文件。互联
我需要共享库文件 libthrift-0.9.3.so 作为其他包的依赖项。我在构建 thrift-0.9.3 包时看到编译问题(我确实从 https://thrift.apache.org/down
我尝试在 R 版本 3.5.0 中安装“arcgisbinding”包。但是我失败了,得到以下错误和警告。 Installing package into ‘C:/Users/Lenovo/Docum
我尝试在 R 版本 3.5.0 中安装“arcgisbinding”包。但是我失败了,得到以下错误和警告。 Installing package into ‘C:/Users/Lenovo/Docum
我试图在 flutter 中测试这个应用程序,但我无法运行该应用程序,因为出现此错误“名称‘Page’在库‘package:burn_off/widgets/page.dart’和‘package’中
试图理解和学习如何编写包...用我一直使用的东西进行测试,记录... 您能帮我理解为什么“日志”变量不起作用...并且屏幕上没有日志记录吗? 谢谢! 主要文件: #!/opt/local/bin/py
我尝试运行此使用 Google 云的代码。 import signal import sys from google.cloud import language, exceptions # creat
我想知道是否有人找到了一个很好的 R 包来分析眼动追踪数据? 我遇到了 eyetrackR,但据我所知,没有可用的英文支持文档: http://read.psych.uni-potsdam.de/pm
我正在 R 上制作一个包。我有两个函数共享一个变量(全局)。 如何将其导入到包中? 例如, m<-0 f<-function() { m <- m+1 } g<-function() { m <- m
我用 C 为 Lua 编写了很多模块。每个模块都包含一个 Lua 用户数据类型,我像这样加载和使用它们: A = require("A") B = require("B") a = A.new(3,{
我正在尝试在 R 中的 Ubuntu 上安装 xlsx 包,以便使用允许在 R 中插入链接然后将它们导出到 Excel 的功能。 话虽如此,我根本无法安装该软件包。 显然它必须与 rJava 一起使用
我想在 Haskell 中做一些蒙特卡洛分析。我希望能够编写这样的代码: do n <- poisson lambda xs <- replicateM n $ normal mu sigma
我是一名优秀的程序员,十分优秀!