- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我有如下所示的简单代码:
class testxx(object):
def __init__(self, input):
self.input = input
self.output = T.sum(input)
a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype = np.float32)
classfier = testxx(a)
outxx = classfier.output
outxx = np.asarray(outxx, dtype = np.float32)
但是,我得到以下错误信息:
ValueError: setting an array element with a sequence.
此外,当我使用theano.tensor的函数时,它返回的似乎是所谓的“张量”,我不能简单地将其切换为numpy.array类型,即使结果应该是这样的一个矩阵。
这就是我的问题:如何将 outxx 切换为键入 numpy.array?
最佳答案
Theano“张量”变量是符号变量。你用它们构建的东西就像你编写的程序。你需要编译一个 Theano 函数来执行这个程序所做的事情。有两种编译 Theano 函数的方法:
f = theano.function([testxx.input], [outxx])
f_a1 = f(a)
# Or the combined computation/execution
f_a2 = outxx.eval({testxx.input: a})
当你编译一个 Theano 函数时,你必须告诉输入是什么,输出是什么。这就是为什么在调用 theano.function() 时有 2 个参数。 eval() 是一个接口(interface),它将在具有相应值的给定符号输入上编译和执行 Theano 函数。
关于python - 如何将 theano.tensor 转换为 numpy.array?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/23643850/
我试图将迁移学习应用于 InceptionV3。这是我的代码: inception_model = InceptionV3(weights='imagenet',include_top=False)
我正在尝试展示 GAN 网络在某些指定时期的结果。打印当前结果的功能以前与 TF 一起使用。我需要换成 pytorch。 def show_result(G_net, z_, num_epoch, s
我对孪生神经网络还很陌生,最近发现了 this example和 Colab notebook . 运行代码时出现以下错误: IndexError: invalid index of a 0-dim
我正在尝试使用在此 PR 中添加的“高级”、numpy 样式的切片,但是我遇到了 same issue as the user here : ValueError: Shape must be ran
我想在 TensorFlow 中做类似这段 Numpy 代码的事情: a = np.zeros([5, 2]) idx = np.random.randint(0, 2, (5,)) row_idx
我有以下特征张量: Eigen::Tensor m(3,10,10); 我想访问第一个矩阵。在 numpy 中我会这样做 m(0,:,:) 我如何在 Eigen 中做到这一点 最佳答案 您可以使用 .
1、问题 模型训练完后进行测试,报错 RuntimeError: Tensor for 'out' is on CPU, Tensor for argument #1 'self' is on CPU
我正在对 TFRecords 进行配对,它为我提供了一个标签作为数值。但是我需要在读取原始记录时将此值转换为分类向量。我怎样才能做到这一点。这是读取原型(prototype)记录的代码片段: def
我正在对 TFRecords 进行配对,它为我提供了一个标签作为数值。但是我需要在读取原始记录时将此值转换为分类向量。我怎样才能做到这一点。这是读取原型(prototype)记录的代码片段: def
我应该如何从 Eigen::Tensor 创建一个 tensorflow::Tensor?我可以一个接一个地复制元素,但我希望有更好的方法。 最佳答案 没有公共(public) api 可以在不复制数
我正在尝试使用 Tensorflow(版本 0.9.0)以与 beginner's tutorial 非常相似的方式训练一个简单的二元逻辑回归分类器。并且在拟合模型时遇到以下错误: ValueErro
从 0.4.0 版本开始,可以使用 torch.tensor 和 torch.Tensor 有什么区别?提供这两个非常相似且令人困惑的替代方案的原因是什么? 最佳答案 在 PyTorch 中,torc
PyTorch0.4中,.data 仍保留,但建议使用 .detach(), 区别在于 .data 返回和 x 的相同数据 tensor, 但不会加入到x的计算历史里,且require s_grad
我有一个参差不齐的张量,在尝试创建模型并使用 model.fit() 时,出现错误:TypeError: Failed to convert object of type to Tensor. Co
我必须用生成器和判别器训练一个 GAN 网络。我的发电机网络如下。 def Generator(image_shape=(512,512,3): inputs = Input(image_shap
我正在使用 Flask 运行 Web 服务器,当我尝试使用 vgg16 时出现错误,vgg16 是 keras 的预训练 VGG16 模型的全局变量。我不知道为什么会出现这个错误,也不知道它是否与 T
我正在使用 keras 的预训练模型,并且在调用 ResNet50(weights='imagenet') 时出现错误。 我在 flask 服务器中有以下代码: def getVGG16Predict
执行以下代码时出现以下错误。 rnn.rnn() 返回张量列表。错误在 convert_to_tensor 行。 TypeError: List of Tensors when single Tens
我有一个fruit_train_net.py 文件,其中包含以下代码 import tensorflow as tf import numpy as np import time import os
我们可以使用 torch.Tensor([1., 2.], device='cuda') 在 GPU 上分配张量.使用这种方式而不是torch.cuda.Tensor([1., 2.])有什么不同吗?
我是一名优秀的程序员,十分优秀!