- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我正在使用 scipy.optimize.minimize
来优化一个答案只能是整数的现实问题。我当前的代码如下所示:
from scipy.optimize import minimize
def f(x):
return (481.79/(5+x[0]))+(412.04/(4+x[1]))+(365.54/(3+x[2]))+(375.88/(3+x[3]))+(379.75/(3+x[4]))+(632.92/(5+x[5]))+(127.89/(1+x[6]))+(835.71/(6+x[7]))+(200.21/(1+x[8]))
def con(x):
return sum(x)-7
cons = {'type':'eq', 'fun': con}
print scipy.optimize.minimize(f, [1,1,1,1,1,1,1,0,0], constraints=cons, bounds=([0,7],[0,7],[0,7],[0,7],[0,7],[0,7],[0,7],[0,7],[0,7]))
这产生:
x: array([ 2.91950510e-16, 2.44504019e-01, 9.97850733e-01,
1.05398840e+00, 1.07481251e+00, 2.60570253e-01,
1.36470363e+00, 4.48527831e-02, 1.95871767e+00]
但我希望它使用整数值进行优化(将所有 x
舍入到最接近的整数并不总是给出最小值)。
有没有办法只对整数值使用 scipy.optimize.minimize
?
(我想我可以创建一个数组,其中包含 x
的所有可能排列,并为每个组合计算 f(x),但这似乎不是一个非常优雅或快速的解决方案。)
最佳答案
PuLP 溶液
经过一些研究,我认为您的目标函数不是线性的。我在 Python 中重新创建了问题 pulp库,但 PuLP 不喜欢我们除以 float 和“LpAffineExpression”。 This answer表明线性规划“不理解除法”,但该评论是在添加约束的背景下进行的,而不是目标函数。该评论将我指向“Mixed Integer Linear Fractional Programming (MILFP)”和Wikipedia .
如果它确实有效,您可以在 pulp 中使用以下方法(也许有人能弄清楚原因):
import pulp
data = [(481.79, 5), (412.04, 4), (365.54, 3)] #, (375.88, 3), (379.75, 3), (632.92, 5), (127.89, 1), (835.71, 6), (200.21, 1)]
x = pulp.LpVariable.dicts('x', range(len(data)), lowBound=0, upBound=7, cat=pulp.LpInteger)
numerator = dict((i,tup[0]) for i,tup in enumerate(data))
denom_int = dict((i,tup[1]) for i,tup in enumerate(data))
problem = pulp.LpProblem('Mixed Integer Linear Programming', sense=pulp.LpMinimize)
# objective function (doesn't work)
# TypeError: unsupported operand type(s) for /: 'float' and 'LpAffineExpression'
problem += sum([numerator[i] / (denom_int[i] + x[i]) for i in range(len(data))])
problem.solve()
for v in problem.variables():
print(v.name, "=", v.varValue)
使用 scipy.optimize 的暴力解决方案
您可以对函数中的每个 x
使用 brute
和 slice
范围。如果您的函数中有 3 个 x
,那么您的范围元组中也会有 3 个 slice
。所有这一切的关键是将 1
的 step 大小添加到 slice(start, stop,
step
)
所以 slice(#, #, 1)
。
from scipy.optimize import brute
import itertools
def f(x):
return (481.79/(5+x[0]))+(412.04/(4+x[1]))+(365.54/(3+x[2]))
ranges = (slice(0, 9, 1),) * 3
result = brute(f, ranges, disp=True, finish=None)
print(result)
itertools 解决方案
或者您可以使用 itertools 生成所有组合:
combinations = list(itertools.product(*[[0,1,2,3,4,5,6,7,8]]*3))
values = []
for combination in combinations:
values.append((combination, f(combination)))
best = [c for c,v in values if v == min([v for c,v in values])]
print(best)
注意:出于示例目的,这是原始函数的缩小版本。
关于python - 将 scipy.optimize.minimize 限制为整数值,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/39236863/
我在使用 cx_freeze 和 scipy 时无法编译 exe。特别是,我的脚本使用 from scipy.interpolate import griddata 构建过程似乎成功完成,但是当我尝试
是否可以通过函数在 scipy 中定义一个稀疏矩阵,而不是列出所有可能的值?在文档中,我看到可以通过以下方式创建稀疏矩阵 There are seven available sparse matrix
SciPy为非线性最小二乘问题提供了两种功能: optimize.leastsq()仅使用Levenberg-Marquardt算法。 optimize.least_squares()允许我们选择Le
SciPy 中的求解器能否处理复数值(即 x=x'+i*x")?我对使用 Nelder-Mead 类型的最小化函数特别感兴趣。我通常是 Matlab 用户,我知道 Matlab 没有复杂的求解器。如果
我有看起来像这样的数据集: position number_of_tag_at_this_position 3 4 8 6 13 25 23 12 我想对这个数据集应用三次样条插值来插值标签密度;为此
所以,我正在处理维基百科转储,以计算大约 5,700,000 个页面的页面排名。这些文件经过预处理,因此不是 XML 格式。 它们取自 http://haselgrove.id.au/wikipedi
Scipy 和 Numpy 返回归一化的特征向量。我正在尝试将这些向量用于物理应用程序,我需要它们不被标准化。 例如a = np.matrix('-3, 2; -1, 0') W,V = spl.ei
基于此处提供的解释 1 ,我正在尝试使用相同的想法来加速以下积分: import scipy.integrate as si from scipy.optimize import root, fsol
这很容易重新创建。 如果我的脚本 foo.py 是: import scipy 然后运行: python pyinstaller.py --onefile foo.py 当我启动 foo.exe 时,
我想在我的代码中使用 scipy.spatial.distance.cosine。如果我执行类似 import scipy.spatial 或 from scipy import spatial 的操
Numpy 有一个基本的 pxd,声明它的 c 接口(interface)到 cython。是否有用于 scipy 组件(尤其是 scipy.integrate.quadpack)的 pxd? 或者,
有人可以帮我处理 scipy.stats.chisquare 吗?我没有统计/数学背景,我正在使用来自 https://en.wikipedia.org/wiki/Chi-squared_test 的
我正在使用 scipy.odr 拟合数据与权重,但我不知道如何获得拟合优度或 R 平方的度量。有没有人对如何使用函数存储的输出获得此度量有建议? 最佳答案 res_var Output 的属性是所谓的
我刚刚下载了新的 python 3.8,我正在尝试使用以下方法安装 scipy 包: pip3.8 install scipy 但是构建失败并出现以下错误: **Failed to build sci
我有 my own triangulation algorithm它基于 Delaunay 条件和梯度创建三角剖分,使三角形与梯度对齐。 这是一个示例输出: 以上描述与问题无关,但对于上下文是必要的。
这是一个非常基本的问题,但我似乎找不到好的答案。 scipy 到底计算什么内容 scipy.stats.norm(50,10).pdf(45) 据我了解,平均值为 50、标准差为 10 的高斯中像 4
我正在使用 curve_fit 来拟合一阶动态系统的阶跃响应,以估计增益和时间常数。我使用两种方法。第一种方法是在时域中拟合从函数生成的曲线。 # define the first order dyn
让我们假设 x ~ Poisson(2.5);我想计算类似 E(x | x > 2) 的东西。 我认为这可以通过 .dist.expect 运算符来完成,即: D = stats.poisson(2.
我正在通过 OpenMDAO 使用 SLSQP 来解决优化问题。优化工作充分;最后的 SLSQP 输出如下: Optimization terminated successfully. (Exi
log( VA ) = gamma - (1/eta)log[alpha L ^(-eta) + 测试版 K ^(-eta)] 我试图用非线性最小二乘法估计上述函数。我为此使用了 3 个不同的包(Sc
我是一名优秀的程序员,十分优秀!