- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
这是我正在使用的更大代码的 MWE
。基本上,它对位于特定阈值以下的所有值在 KDE ( kernel density estimate ) 上执行蒙特卡罗积分(在这个问题 BTW 上建议了积分方法:Integrate 2D kernel density estimate)。
import numpy as np
from scipy import stats
import time
# Generate some random two-dimensional data:
def measure(n):
"Measurement model, return two coupled measurements."
m1 = np.random.normal(size=n)
m2 = np.random.normal(scale=0.5, size=n)
return m1+m2, m1-m2
# Get data.
m1, m2 = measure(20000)
# Define limits.
xmin = m1.min()
xmax = m1.max()
ymin = m2.min()
ymax = m2.max()
# Perform a kernel density estimate on the data.
x, y = np.mgrid[xmin:xmax:100j, ymin:ymax:100j]
values = np.vstack([m1, m2])
kernel = stats.gaussian_kde(values)
# Define point below which to integrate the kernel.
x1, y1 = 0.5, 0.5
# Get kernel value for this point.
tik = time.time()
iso = kernel((x1,y1))
print 'iso: ', time.time()-tik
# Sample from KDE distribution (Monte Carlo process).
tik = time.time()
sample = kernel.resample(size=1000)
print 'resample: ', time.time()-tik
# Filter the sample leaving only values for which
# the kernel evaluates to less than what it does for
# the (x1, y1) point defined above.
tik = time.time()
insample = kernel(sample) < iso
print 'filter/sample: ', time.time()-tik
# Integrate for all values below iso.
tik = time.time()
integral = insample.sum() / float(insample.shape[0])
print 'integral: ', time.time()-tik
输出看起来像这样:
iso: 0.00259208679199
resample: 0.000817060470581
filter/sample: 2.10829401016
integral: 4.2200088501e-05
这显然意味着 filter/sample 调用几乎占用了代码运行的所有时间。我必须反复运行此代码块数千次,因此它可能会非常耗时。
有什么方法可以加快过滤/采样过程吗?
这是我的实际代码的更现实的 MWE
,其中写入了 Ophion 的多线程解决方案:
import numpy as np
from scipy import stats
from multiprocessing import Pool
def kde_integration(m_list):
m1, m2 = [], []
for item in m_list:
# Color data.
m1.append(item[0])
# Magnitude data.
m2.append(item[1])
# Define limits.
xmin, xmax = min(m1), max(m1)
ymin, ymax = min(m2), max(m2)
# Perform a kernel density estimate on the data:
x, y = np.mgrid[xmin:xmax:100j, ymin:ymax:100j]
values = np.vstack([m1, m2])
kernel = stats.gaussian_kde(values)
out_list = []
for point in m_list:
# Compute the point below which to integrate.
iso = kernel((point[0], point[1]))
# Sample KDE distribution
sample = kernel.resample(size=1000)
#Create definition.
def calc_kernel(samp):
return kernel(samp)
#Choose number of cores and split input array.
cores = 4
torun = np.array_split(sample, cores, axis=1)
#Calculate
pool = Pool(processes=cores)
results = pool.map(calc_kernel, torun)
#Reintegrate and calculate results
insample_mp = np.concatenate(results) < iso
# Integrate for all values below iso.
integral = insample_mp.sum() / float(insample_mp.shape[0])
out_list.append(integral)
return out_list
# Generate some random two-dimensional data:
def measure(n):
"Measurement model, return two coupled measurements."
m1 = np.random.normal(size=n)
m2 = np.random.normal(scale=0.5, size=n)
return m1+m2, m1-m2
# Create list to pass.
m_list = []
for i in range(60):
m1, m2 = measure(5)
m_list.append(m1.tolist())
m_list.append(m2.tolist())
# Call KDE integration function.
print 'Integral result: ', kde_integration(m_list)
Ophion 提供的解决方案在我提供的原始代码上运行良好,但在此版本中失败并出现以下错误:
Integral result: Exception in thread Thread-3:
Traceback (most recent call last):
File "/usr/lib/python2.7/threading.py", line 551, in __bootstrap_inner
self.run()
File "/usr/lib/python2.7/threading.py", line 504, in run
self.__target(*self.__args, **self.__kwargs)
File "/usr/lib/python2.7/multiprocessing/pool.py", line 319, in _handle_tasks
put(task)
PicklingError: Can't pickle <type 'function'>: attribute lookup __builtin__.function failed
我尝试移动 calc_kernel
函数,因为这个问题的答案之一 Multiprocessing: How to use Pool.map on a function defined in a class?声明“您提供给 map() 的函数必须可以通过导入您的模块来访问”;但我仍然无法使这段代码正常工作。
非常感谢任何帮助。
实现 Ophion 的建议以删除 calc_kernel
函数并简单地使用:
results = pool.map(kernel, torun)
努力摆脱 PicklingError
但现在我看到如果我创建一个初始 m_list
超过 62-63 个项目,我会得到这个错误:
Traceback (most recent call last):
File "~/gauss_kde_temp.py", line 67, in <module>
print 'Integral result: ', kde_integration(m_list)
File "~/gauss_kde_temp.py", line 38, in kde_integration
pool = Pool(processes=cores)
File "/usr/lib/python2.7/multiprocessing/__init__.py", line 232, in Pool
return Pool(processes, initializer, initargs, maxtasksperchild)
File "/usr/lib/python2.7/multiprocessing/pool.py", line 161, in __init__
self._result_handler.start()
File "/usr/lib/python2.7/threading.py", line 494, in start
_start_new_thread(self.__bootstrap, ())
thread.error: can't start new thread
由于我在实际执行此代码时的实际列表最多可包含 2000 个项目,因此此问题导致代码无法使用。 38
行是这一行:
pool = Pool(processes=cores)
很明显这与我使用的内核数量有关?
这个问题"Can't start a new thread error" in Python建议使用:
threading.active_count()
当我得到那个错误时检查我正在运行的线程数。我检查了一下,它总是在达到 374
线程时崩溃。我如何编写代码来解决这个问题?
这是处理最后一个问题的新问题:Thread error: can't start new thread
最佳答案
可能最简单的加速方法是并行化kernel(sample)
:
取这段代码片段:
tik = time.time()
insample = kernel(sample) < iso
print 'filter/sample: ', time.time()-tik
#filter/sample: 1.94065904617
将其更改为使用多处理
:
from multiprocessing import Pool
tik = time.time()
#Create definition.
def calc_kernel(samp):
return kernel(samp)
#Choose number of cores and split input array.
cores = 4
torun = np.array_split(sample, cores, axis=1)
#Calculate
pool = Pool(processes=cores)
results = pool.map(calc_kernel, torun)
#Reintegrate and calculate results
insample_mp = np.concatenate(results) < iso
print 'multiprocessing filter/sample: ', time.time()-tik
#multiprocessing filter/sample: 0.496874094009
仔细检查他们返回相同的答案:
print np.all(insample==insample_mp)
#True
4 核性能提升 3.9 倍。不确定你在什么上运行它,但是在大约 6 个处理器之后,你的输入数组大小不够大,无法获得相当大的 yield 。例如,使用 20 个处理器,速度仅提高了 5.8 倍。
关于python - 加快内核估计的采样,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/18538790/
我正在寻找一种方法来对数字进行 1:40、3812 次(长度 = 3812)的采样,并进行替换 - 但对其进行限制,使每个数字的使用次数不会超过 100 次。有没有办法在采样命令 (sample())
如果我想随机采样 pandas 数据帧,我可以使用 pandas.DataFrame.sample . 假设我随机抽取 80% 的行。如何自动获取另外 20% 未选取的行? 最佳答案 正如 Lager
我使用以下函数在每个图像中采样点。如果batch_size为None,tf.range会给出错误。如何在 tensorflow 中采样 def sampling(binary_selection,nu
我想知道是否有任何方法可以循环浏览 .wav 文件以获取 wav 文件中特定点的振幅/DB。我现在正在将它读入一个字节数组,但这对我来说没有任何帮助。 我将它与我开发的一些硬件结合使用,这些硬件将光数
我有一个日期时间的时间序列,双列存储在 mySQL 中,并且希望每分钟对时间序列进行采样(即以一分钟为间隔提取最后一个值)。在一个 select 语句中是否有一种有效的方法来做到这一点? 蛮力方式将涉
我正在为延迟渲染管道准备好我的一个小型 DirectX 11.0 项目中的一切。但是,我在从像素着色器中对深度缓冲区进行采样时遇到了很多麻烦。 首先我定义深度纹理及其着色器资源 View :
问题出现在量子值的样本上。情况是: 有一个表支付(payments): id_user[int] sum [int] date[date] 例如, sum(数量) 可以是 0 到 100,000 之间
这是一个理论问题。我目前正在研究渲染方程,我不明白在哪种情况下区域采样或半球采样更好以及为什么。 我想知道的另一件事是,如果我们采用两种方法的平均值,结果是否会更好? 最佳答案 Veach 和 Gui
我有一个 4x4 阵列,想知道是否有办法从它的任何位置随机抽取一个 2x2 正方形,允许正方形在到达边缘时环绕。 例如: >> A = np.arange(16).reshape(4,-1) >> s
我想构建 HBase 表的行键空间的随机样本。 例如,我希望 HBase 中大约 1% 的键随机分布在整个表中。执行此操作的最佳方法是什么? 我想我可以编写一个 MapReduce 作业来处理所有数据
当像这样在 GLSL 中对纹理进行采样时: vec4 color = texture(mySampler, myCoords); 如果没有纹理绑定(bind)到 mySampler,颜色似乎总是 (0
我考虑过的一些方法: 继承自Model类 Sampled softmax in tensorflow keras 继承自Layers类 How can I use TensorFlow's sampl
我有表clients,其中包含id、name、company列。 表agreements,其中包含id、client_id、number、created_at列. 一对多关系。 我的查询: SELEC
在具有许多类的分类问题中,tensorflow 文档建议使用 sampled_softmax_loss通过一个简单的 softmax减少训练时间。 根据docs和 source (第 1180 行),
首先,我想从三个数据帧(每个 150 行)中随机抽取样本并连接结果。其次,我想尽可能多地重复这个过程。 对于第 1 部分,我使用以下函数: def get_sample(n_A, n_B, n_C):
我正在尝试编写几个像素着色器以应用于类似于 Photoshop 效果的图像。比如这个效果: http://www.geeks3d.com/20110428/shader-library-swirl-p
使用 Activity Monitor/Instruments/Shark 进行采样将显示充满 Python 解释器 C 函数的堆栈跟踪。如果能看到相应的 Python 符号名称,我会很有帮助。是否有
我正在使用GAPI API来访问Google Analytics(分析),而不是直接自己做(我知道有点懒...)。我看过类文件,但看不到任何用于检查采样的内置函数。我想知道使用它的人是否找到了一种方法
我正在尝试从 Peoplesoft 数据库中随机抽取总体样本。在线搜索使我认为 select 语句的 Sample 子句可能是我们使用的一个可行选项,但是我无法理解 Sample 子句如何确定返回的样
我有一个程序,在其中我只是打印到 csv,我想要每秒正好 100 个样本点,但我不知道从哪里开始或如何做!请帮忙! from datetime import datetime import panda
我是一名优秀的程序员,十分优秀!