- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我正在使用 Scikit-learning,我需要从这样的混淆矩阵中计算真阳性 (TP)、假阳性 (FP)、真阴性 (TN) 和假阴性 (FN):
[[2 0 3 4]
[0 4 5 1]
[1 0 3 2]
[5 0 0 4]]
我知道如何计算 TP、FP 和 FN,但我不知道如何获得 TN。有人可以告诉我吗?
最佳答案
我认为你应该以one-vs-the-rest的方式对待这个多类分类(所以每个2x2表i
衡量一个二分类问题的性能,即每个obs是否属于标签 i
或不)。因此,您可以计算每个单独标签的 TP、FP、FN、TN。
import numpy as np
confusion_matrix = np.array([[2,0,3,4],
[0,4,5,1],
[1,0,3,2],
[5,0,0,4]])
def process_cm(confusion_mat, i=0, to_print=True):
# i means which class to choose to do one-vs-the-rest calculation
# rows are actual obs whereas columns are predictions
TP = confusion_mat[i,i] # correctly labeled as i
FP = confusion_mat[:,i].sum() - TP # incorrectly labeled as i
FN = confusion_mat[i,:].sum() - TP # incorrectly labeled as non-i
TN = confusion_mat.sum().sum() - TP - FP - FN
if to_print:
print('TP: {}'.format(TP))
print('FP: {}'.format(FP))
print('FN: {}'.format(FN))
print('TN: {}'.format(TN))
return TP, FP, FN, TN
for i in range(4):
print('Calculating 2x2 contigency table for label{}'.format(i))
process_cm(confusion_matrix, i, to_print=True)
Calculating 2x2 contigency table for label0
TP: 2
FP: 6
FN: 7
TN: 19
Calculating 2x2 contigency table for label1
TP: 4
FP: 0
FN: 6
TN: 24
Calculating 2x2 contigency table for label2
TP: 3
FP: 8
FN: 3
TN: 20
Calculating 2x2 contigency table for label3
TP: 4
FP: 7
FN: 5
TN: 18
关于python - Scikit-learn:如何计算真负,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/31345724/
来自文档: sklearn.preprocessing.MinMaxScaler.min_ : ndarray, shape (n_features,) Per feature adjustment
这是我的数据:(我重置了索引。日期应该是索引) Date A B C D 0 2013-10-07 -0.002
我正在构建一个分类器,通过贷款俱乐部数据,选择最好的 X 笔贷款。我训练了一个随机森林,并创建了通常的 ROC 曲线、混淆矩阵等。 混淆矩阵将分类器的预测(森林中树木的多数预测)作为参数。但是,我希望
是否有类似于 的 scikit-learn 方法/类元成本 在 Weka 或其他实用程序中实现的算法以执行常量敏感分析? 最佳答案 不,没有。部分分类器提供 class_weight和 sample_
我发现使用相同数据的两种交叉验证技术之间的分类性能存在差异。我想知道是否有人可以阐明这一点。 方法一:cross_validation.train_test_split 方法 2:分层折叠。 具有相同
我正在查看 scikit-learn 文档中的这个示例:http://scikit-learn.org/0.18/auto_examples/model_selection/plot_nested_c
我想训练一个具有很多标称属性的数据集。我从一些帖子中注意到,要转换标称属性必须将它们转换为重复的二进制特征。另外据我所知,这样做在概念上会使数据集稀疏。我也知道 scikit-learn 使用稀疏矩阵
我正在尝试在 scikit-learn (sklearn.feature_selection.SelectKBest) 中通过卡方方法进行特征选择。当我尝试将其应用于多标签问题时,我收到此警告: 用户
有几种算法可以构建决策树,例如 CART(分类和回归树)、ID3(迭代二分法 3)等 scikit-learn 默认使用哪种决策树算法? 当我查看一些决策树 python 脚本时,它神奇地生成了带有
我正在尝试在 scikit-learn (sklearn.feature_selection.SelectKBest) 中通过卡方方法进行特征选择。当我尝试将其应用于多标签问题时,我收到此警告: 用户
有几种算法可以构建决策树,例如 CART(分类和回归树)、ID3(迭代二分法 3)等 scikit-learn 默认使用哪种决策树算法? 当我查看一些决策树 python 脚本时,它神奇地生成了带有
有没有办法让 scikit-learn 中的 fit 方法有一个进度条? 是否可以包含自定义的类似 Pyprind 的内容? ? 最佳答案 如果您使用 verbose=1 初始化模型调用前 fit你应
我正在尝试使用 grisSearchCV 在 scikit-learn 中拟合一些模型,并且我想使用“一个标准错误”规则来选择最佳模型,即从分数在 1 以内的模型子集中选择最简约的模型最好成绩的标准误
我有一个预定义的决策树,它是根据基于知识的拆分构建的,我想用它来进行预测。我可以尝试从头开始实现决策树分类器,但那样我就无法在 Scikit 函数中使用 predict 等内置函数。有没有办法将我的树
我正在使用随机森林解决分类问题。为此,我决定使用 Python 库 scikit-learn。但我对随机森林算法和这个工具都很陌生。我的数据包含许多因子变量。我用谷歌搜索,发现像我们在线性回归中所做的
我使用 Keras 回归器对数据进行回归拟合。我使用 Scikit-learn wrapper 和 Pipeline 来首先标准化数据,然后将其拟合到 Keras 回归器上。有点像这样: from s
在 scikit-learn ,有一个 的概念评分函数 .如果我们有一些预测标签和真实标签,我们可以通过调用 scoring(y_true, y_predict) 来获得分数。 .这种评分函数的一个例
我知道 train_test_split 方法将数据集拆分为随机训练和测试子集。并且使用 random_state=int 可以确保每次调用该方法时我们对该数据集都有相同的拆分。 我的问题略有不同。
我正在使用 scikit-learn 0.18.dev0。我知道之前有人问过完全相同的问题 here .我尝试了那里提供的答案,但出现以下错误 >>> def mydist(x, y): ...
我试图在 scikit-learn 中结合递归特征消除和网格搜索。正如您从下面的代码(有效)中看到的那样,我能够从网格搜索中获得最佳估计量,然后将该估计量传递给 RFECV。但是,我宁愿先进行 RFE
我是一名优秀的程序员,十分优秀!