- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我尝试绘制具有边界条件的一维空间扩展系统的分岔图
x[i,n+1] = (1-eps)*(r*x[i,n]*(1-x[i,n])) + 0.5*eps*( r*x[i-1,n]*(1-x[i-1,n]) + r*x[i+1,n]*(1-x[i+1,n])) + p
我在获得所需输出数字时遇到问题可能是因为我使用的瞬变数。有人可以通过交叉检查我的代码来帮助我吗?我应该选择什么 nTransients 值或者我应该忽略多少瞬变?
我的Python代码如下:
import numpy as np
from numpy import *
from pylab import *
L = 60 # no. of lattice sites
eps = 0.6 # diffusive coupling strength
r = 4.0 # control parameter r
np.random.seed(1010)
ic = np.random.uniform(0.1, 0.9, L) # random initial condition betn. (0,1)
nTransients = 900 # The iterates we'll throw away
nIterates = 1000 # This sets how much the attractor is filled in
nSteps = 400 # This sets how dense the bifurcation diagram will be
pLow = -0.4
pHigh = 0.0
pInc = (pHigh-pLow)/float(nSteps)
def LM(p, x):
x_new = []
for i in range(L):
if i==0:
x_new.append((1-eps)*(r*x[i]*(1-x[i])) + 0.5*eps*(r*x[L-1]*(1-x[L-1]) + r*x[i+1]*(1-x[i+1])) + p)
elif i==L-1:
x_new.append((1-eps)*(r*x[i]*(1-x[i])) + 0.5*eps*(r*x[i-1]*(1-x[i-1]) + r*x[0]*(1-x[0])) + p)
elif i>0 and i<L-1:
x_new.append((1-eps)*(r*x[i]*(1-x[i])) + 0.5*eps*(r*x[i-1]*(1-x[i-1]) + r*x[i+1]*(1-x[i+1])) + p)
return x_new
for p in arange(pLow, pHigh, pInc):
# set initial conditions
state = ic
# throw away the transient iterations
for i in range(nTransients):
state = LM(p, state)
# now stote the next batch of iterates
psweep = [] # store p values
x = [] # store iterates
for i in range(nIterates):
state = LM(p, state)
psweep.append(p)
x.append(state[L/2-1])
plot(psweep, x, 'k,') # Plot the list of (r,x) pairs as pixels
xlabel('Pinning Strength p')
ylabel('X(L/2)')
# Display plot in window
show()
有人能告诉我pylab最后显示的图形有点还是线作为标记,如果是线那么如何用点绘制。
这是我的引用输出图像,使用像素后:
最佳答案
目前还不清楚您想要的输出到底是什么,但我猜您的目标是看起来像这张图片 from Wikipedia 的东西。 :
按照这个假设,我尽了最大的努力,但我猜你的方程式(带有边界条件等)给你的东西看起来并不那么漂亮。这是我的结果:
这个图本身可能看起来不是最好的东西,但是,如果你放大,你真的可以看到一些美丽的细节(这是从图的中心开始, fork 的两条臂向下延伸的地方, 相遇, 然后再次 fork ):
请注意,我使用了水平线,alpha=0.1(最初您使用的是实心垂直线,这就是结果看起来不太好的原因)。
我基本上对您的程序进行了一些修改以使其矢量化:我删除了 p
上的 for 循环,这使得整个程序几乎立即运行。这使我能够对 p
使用更密集的采样,并允许我绘制水平线。
from __future__ import print_function, division
import numpy as np
import matplotlib.pyplot as plt
L = 60 # no. of lattice sites
eps = 0.6 # diffusive coupling strength
r = 4.0 # control parameter r
np.random.seed(1010)
ic = np.random.uniform(0.1, 0.9, L) # random initial condition betn. (0,1)
nTransients = 100 # The iterates we'll throw away
nIterates = 100 # This sets how much the attractor is filled in
nSteps = 4000 # This sets how dense the bifurcation diagram will be
pLow = -0.4
pHigh = 0.0
pInc = (pHigh - pLow) / nSteps
def LM(p, x):
x_new = np.empty(x.shape)
for i in range(L):
if i == 0:
x_new[i] = ((1 - eps) * (r * x[i] * (1 - x[i])) + 0.5 * eps * (r * x[L - 1] * (1 - x[L - 1]) + r * x[i + 1] * (1 - x[i + 1])) + p)
elif i == L - 1:
x_new[i] = ((1 - eps) * (r * x[i] * (1 - x[i])) + 0.5 * eps * (r * x[i - 1] * (1 - x[i - 1]) + r * x[0] * (1 - x[0])) + p)
elif i > 0 and i < L - 1:
x_new[i] = ((1 - eps) * (r * x[i] * (1 - x[i])) + 0.5 * eps * (r * x[i - 1] * (1 - x[i - 1]) + r * x[i + 1] * (1 - x[i + 1])) + p)
return x_new
p = np.arange(pLow, pHigh, pInc)
state = np.tile(ic[:, np.newaxis], (1, p.size))
# set initial conditions
# throw away the transient iterations
for i in range(nTransients):
state = LM(p, state)
# now store the next batch of iterates
x = np.empty((p.size, nIterates)) # store iterates
for i in range(nIterates):
state = LM(p, state)
x[:, i] = state[L // 2 - 1]
# Plot the list of (r,x) pairs as pixels
plt.plot(p, x, c=(0, 0, 0, 0.1))
plt.xlabel('Pinning Strength p')
plt.ylabel('X(L/2)')
# Display plot in window
plt.show()
我不想向您解释整个程序:我使用了一些标准的 numpy 技巧,包括 broadcasting , 但除此之外,我没有做太多修改。我根本没有修改您的 LM
函数。
如果您有任何问题,请随时在评论中问我!我很乐意解释您想要解释的细节。
关于 transient 和迭代的注意事项:希望现在程序运行得更快,您可以尝试自己玩弄这些元素。对我来说, transient 的数量似乎决定了情节保持“确定性外观”的时间。迭代次数只会增加绘图线的密度,因此将其增加到一个点以上对我来说似乎没有意义。
我尝试将瞬变的数量一直增加到 10,000。这是我的实验结果,供您引用:
关于python - Python 中的耦合映射点阵,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/40670031/
我正在处理一组标记为 160 个组的 173k 点。我想通过合并最接近的(到 9 或 10 个组)来减少组/集群的数量。我搜索过 sklearn 或类似的库,但没有成功。 我猜它只是通过 knn 聚类
我有一个扁平数字列表,这些数字逻辑上以 3 为一组,其中每个三元组是 (number, __ignored, flag[0 or 1]),例如: [7,56,1, 8,0,0, 2,0,0, 6,1,
我正在使用 pipenv 来管理我的包。我想编写一个 python 脚本来调用另一个使用不同虚拟环境(VE)的 python 脚本。 如何运行使用 VE1 的 python 脚本 1 并调用另一个 p
假设我有一个文件 script.py 位于 path = "foo/bar/script.py"。我正在寻找一种在 Python 中通过函数 execute_script() 从我的主要 Python
这听起来像是谜语或笑话,但实际上我还没有找到这个问题的答案。 问题到底是什么? 我想运行 2 个脚本。在第一个脚本中,我调用另一个脚本,但我希望它们继续并行,而不是在两个单独的线程中。主要是我不希望第
我有一个带有 python 2.5.5 的软件。我想发送一个命令,该命令将在 python 2.7.5 中启动一个脚本,然后继续执行该脚本。 我试过用 #!python2.7.5 和http://re
我在 python 命令行(使用 python 2.7)中,并尝试运行 Python 脚本。我的操作系统是 Windows 7。我已将我的目录设置为包含我所有脚本的文件夹,使用: os.chdir("
剧透:部分解决(见最后)。 以下是使用 Python 嵌入的代码示例: #include int main(int argc, char** argv) { Py_SetPythonHome
假设我有以下列表,对应于及时的股票价格: prices = [1, 3, 7, 10, 9, 8, 5, 3, 6, 8, 12, 9, 6, 10, 13, 8, 4, 11] 我想确定以下总体上最
所以我试图在选择某个单选按钮时更改此框架的背景。 我的框架位于一个类中,并且单选按钮的功能位于该类之外。 (这样我就可以在所有其他框架上调用它们。) 问题是每当我选择单选按钮时都会出现以下错误: co
我正在尝试将字符串与 python 中的正则表达式进行比较,如下所示, #!/usr/bin/env python3 import re str1 = "Expecting property name
考虑以下原型(prototype) Boost.Python 模块,该模块从单独的 C++ 头文件中引入类“D”。 /* file: a/b.cpp */ BOOST_PYTHON_MODULE(c)
如何编写一个程序来“识别函数调用的行号?” python 检查模块提供了定位行号的选项,但是, def di(): return inspect.currentframe().f_back.f_l
我已经使用 macports 安装了 Python 2.7,并且由于我的 $PATH 变量,这就是我输入 $ python 时得到的变量。然而,virtualenv 默认使用 Python 2.6,除
我只想问如何加快 python 上的 re.search 速度。 我有一个很长的字符串行,长度为 176861(即带有一些符号的字母数字字符),我使用此函数测试了该行以进行研究: def getExe
list1= [u'%app%%General%%Council%', u'%people%', u'%people%%Regional%%Council%%Mandate%', u'%ppp%%Ge
这个问题在这里已经有了答案: Is it Pythonic to use list comprehensions for just side effects? (7 个答案) 关闭 4 个月前。 告
我想用 Python 将两个列表组合成一个列表,方法如下: a = [1,1,1,2,2,2,3,3,3,3] b= ["Sun", "is", "bright", "June","and" ,"Ju
我正在运行带有最新 Boost 发行版 (1.55.0) 的 Mac OS X 10.8.4 (Darwin 12.4.0)。我正在按照说明 here构建包含在我的发行版中的教程 Boost-Pyth
学习 Python,我正在尝试制作一个没有任何第 3 方库的网络抓取工具,这样过程对我来说并没有简化,而且我知道我在做什么。我浏览了一些在线资源,但所有这些都让我对某些事情感到困惑。 html 看起来
我是一名优秀的程序员,十分优秀!