- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我正在按照示例 here 用 Python 编写一个神经网络.似乎反向传播算法不起作用,因为神经网络在训练 10,000 次后未能产生正确的值(在误差范围内)。具体来说,我训练它计算以下示例中的正弦函数:
import numpy as np
class Neuralnet:
def __init__(self, neurons):
self.weights = []
self.inputs = []
self.outputs = []
self.errors = []
self.rate = .1
for layer in range(len(neurons)):
self.inputs.append(np.empty(neurons[layer]))
self.outputs.append(np.empty(neurons[layer]))
self.errors.append(np.empty(neurons[layer]))
for layer in range(len(neurons)-1):
self.weights.append(
np.random.normal(
scale=1/np.sqrt(neurons[layer]),
size=[neurons[layer], neurons[layer + 1]]
)
)
def feedforward(self, inputs):
self.inputs[0] = inputs
for layer in range(len(self.weights)):
self.outputs[layer] = np.tanh(self.inputs[layer])
self.inputs[layer + 1] = np.dot(self.weights[layer].T, self.outputs[layer])
self.outputs[-1] = np.tanh(self.inputs[-1])
def backpropagate(self, targets):
gradient = 1 - self.outputs[-1] * self.outputs[-1]
self.errors[-1] = gradient * (self.outputs[-1] - targets)
for layer in reversed(range(len(self.errors) - 1)):
gradient = 1 - self.outputs[layer] * self.outputs[layer]
self.errors[layer] = gradient * np.dot(self.weights[layer], self.errors[layer + 1])
for layer in range(len(self.weights)):
self.weights[layer] -= self.rate * np.outer(self.outputs[layer], self.errors[layer + 1])
def xor_example():
net = Neuralnet([2, 2, 1])
for step in range(100000):
net.feedforward([0, 0])
net.backpropagate([-1])
net.feedforward([0, 1])
net.backpropagate([1])
net.feedforward([1, 0])
net.backpropagate([1])
net.feedforward([1, 1])
net.backpropagate([-1])
net.feedforward([1, 1])
print(net.outputs[-1])
def identity_example():
net = Neuralnet([1, 3, 1])
for step in range(100000):
x = np.random.normal()
net.feedforward([x])
net.backpropagate([np.tanh(x)])
net.feedforward([-2])
print(net.outputs[-1])
def sine_example():
net = Neuralnet([1, 6, 1])
for step in range(100000):
x = np.random.normal()
net.feedforward([x])
net.backpropagate([np.tanh(np.sin(x))])
net.feedforward([3])
print(net.outputs[-1])
sine_example()
输出未能接近 tanh(sin(3)) = 0.140190616
。我怀疑是一个涉及错误索引或对齐的错误,但 Numpy 不会引发任何此类错误。关于我哪里出错的任何提示?
编辑:我忘了添加偏差神经元。这是更新后的代码:
import numpy as np
class Neuralnet:
def __init__(self, neurons):
self.weights = []
self.outputs = []
self.inputs = []
self.errors = []
self.offsets = []
self.rate = .01
for layer in range(len(neurons)-1):
self.weights.append(
np.random.normal(
scale=1/np.sqrt(neurons[layer]),
size=[neurons[layer], neurons[layer + 1]]
)
)
self.outputs.append(np.empty(neurons[layer]))
self.inputs.append(np.empty(neurons[layer]))
self.errors.append(np.empty(neurons[layer]))
self.offsets.append(np.random.normal(scale=1/np.sqrt(neurons[layer]), size=neurons[layer + 1]))
self.inputs.append(np.empty(neurons[-1]))
self.errors.append(np.empty(neurons[-1]))
def feedforward(self, inputs):
self.inputs[0] = inputs
for layer in range(len(self.weights)):
self.outputs[layer] = np.tanh(self.inputs[layer])
self.inputs[layer + 1] = self.offsets[layer] + np.dot(self.weights[layer].T, self.outputs[layer])
def backpropagate(self, targets):
self.errors[-1] = self.inputs[-1] - targets
for layer in reversed(range(len(self.errors) - 1)):
gradient = 1 - self.outputs[layer] * self.outputs[layer]
self.errors[layer] = gradient * np.dot(self.weights[layer], self.errors[layer + 1])
for layer in range(len(self.weights)):
self.weights[layer] -= self.rate * np.outer(self.outputs[layer], self.errors[layer + 1])
self.offsets[layer] -= self.rate * self.errors[layer + 1]
def sine_example():
net = Neuralnet([1, 5, 1])
for step in range(10000):
x = np.random.uniform(-5, 5)
net.feedforward([x])
net.backpropagate([np.sin(x)])
net.feedforward([np.pi])
print(net.inputs[-1])
def xor_example():
net = Neuralnet([2, 2, 1])
for step in range(10000):
net.feedforward([0, 0])
net.backpropagate([-1])
net.feedforward([0, 1])
net.backpropagate([1])
net.feedforward([1, 0])
net.backpropagate([1])
net.feedforward([1, 1])
net.backpropagate([-1])
net.feedforward([1, 1])
print(net.outputs[-1])
def identity_example():
net = Neuralnet([1, 3, 1])
for step in range(10000):
x = np.random.normal()
net.feedforward([x])
net.backpropagate([x])
net.feedforward([-2])
print(net.outputs[-1])
identity_example()
最佳答案
我认为您以错误的方式训练神经网络。您有一个超过 10000 次迭代的循环,并在每个循环中提供一个新样本。在这种情况下,NN 永远不会接受训练。
(说法有误!请看更新!)
你需要做的是生成大量真实样本Y = sin(X)
,ONCE给你的网络> 并向前和向后迭代训练集,以最小化成本函数。要检查算法,您可能需要根据迭代次数绘制成本函数并确保成本下降。
另一个重点是权重的初始化。您的数字非常大,网络需要很长时间才能收敛,尤其是在使用低速率时。在一些小范围 [-eps .. eps]
中统一生成初始权重是一个很好的做法。
在我的代码中,我实现了两个不同的激活函数:sigmoid()
和 tanh()
。您需要根据所选函数缩放输入:分别为 [0 .. 1]
和 [-1 .. 1]
。
下面是一些图像,显示了成本函数以及对 sigmoid()
和 tanh()
激活函数的预测结果:
如您所见,sigmoid()
激活比 tanh()
提供了更好的结果。
此外,与具有 4 层的更大网络 [1, 6] 相比,我在使用网络
。所以 NN 的大小并不总是关键因素。以下是对上述 4 层网络的预测:[1, 6, 1]
时得到了更好的预测, 4, 1]
这是我的代码和一些注释。我试着尽可能地使用你的符号。
import numpy as np
import math
import matplotlib.pyplot as plt
class Neuralnet:
def __init__(self, neurons, activation):
self.weights = []
self.inputs = []
self.outputs = []
self.errors = []
self.rate = 0.5
self.activation = activation #sigmoid or tanh
self.neurons = neurons
self.L = len(self.neurons) #number of layers
eps = 0.12; # range for uniform distribution -eps..+eps
for layer in range(len(neurons)-1):
self.weights.append(np.random.uniform(-eps,eps,size=(neurons[layer+1], neurons[layer]+1)))
###################################################################################################
def train(self, X, Y, iter_count):
m = X.shape[0];
for layer in range(self.L):
self.inputs.append(np.empty([m, self.neurons[layer]]))
self.errors.append(np.empty([m, self.neurons[layer]]))
if (layer < self.L -1):
self.outputs.append(np.empty([m, self.neurons[layer]+1]))
else:
self.outputs.append(np.empty([m, self.neurons[layer]]))
#accumulate the cost function
J_history = np.zeros([iter_count, 1])
for i in range(iter_count):
self.feedforward(X)
J = self.cost(Y, self.outputs[self.L-1])
J_history[i, 0] = J
self.backpropagate(Y)
#plot the cost function to check the descent
plt.plot(J_history)
plt.show()
###################################################################################################
def cost(self, Y, H):
J = np.sum(np.sum(np.power((Y - H), 2), axis=0))/(2*m)
return J
###################################################################################################
def feedforward(self, X):
m = X.shape[0];
self.outputs[0] = np.concatenate( (np.ones([m, 1]), X), axis=1)
for i in range(1, self.L):
self.inputs[i] = np.dot( self.outputs[i-1], self.weights[i-1].T )
if (self.activation == 'sigmoid'):
output_temp = self.sigmoid(self.inputs[i])
elif (self.activation == 'tanh'):
output_temp = np.tanh(self.inputs[i])
if (i < self.L - 1):
self.outputs[i] = np.concatenate( (np.ones([m, 1]), output_temp), axis=1)
else:
self.outputs[i] = output_temp
###################################################################################################
def backpropagate(self, Y):
self.errors[self.L-1] = self.outputs[self.L-1] - Y
for i in range(self.L - 2, 0, -1):
if (self.activation == 'sigmoid'):
self.errors[i] = np.dot( self.errors[i+1], self.weights[i][:, 1:] ) * self.sigmoid_prime(self.inputs[i])
elif (self.activation == 'tanh'):
self.errors[i] = np.dot( self.errors[i+1], self.weights[i][:, 1:] ) * (1 - self.outputs[i][:, 1:]*self.outputs[i][:, 1:])
for i in range(0, self.L-1):
grad = np.dot(self.errors[i+1].T, self.outputs[i]) / m
self.weights[i] = self.weights[i] - self.rate*grad
###################################################################################################
def sigmoid(self, z):
s = 1.0/(1.0 + np.exp(-z))
return s
###################################################################################################
def sigmoid_prime(self, z):
s = self.sigmoid(z)*(1 - self.sigmoid(z))
return s
###################################################################################################
def predict(self, X, weights):
m = X.shape[0];
self.inputs = []
self.outputs = []
self.weights = weights
for layer in range(self.L):
self.inputs.append(np.empty([m, self.neurons[layer]]))
if (layer < self.L -1):
self.outputs.append(np.empty([m, self.neurons[layer]+1]))
else:
self.outputs.append(np.empty([m, self.neurons[layer]]))
self.feedforward(X)
return self.outputs[self.L-1]
###################################################################################################
# MAIN PART
activation1 = 'sigmoid' # the input should be scaled into [ 0..1]
activation2 = 'tanh' # the input should be scaled into [-1..1]
activation = activation1
net = Neuralnet([1, 6, 1], activation) # structure of the NN and its activation function
##########################################################################################
# TRAINING
m = 1000 #size of the training set
X = np.linspace(0, 4*math.pi, num = m).reshape(m, 1); # input training set
Y = np.sin(X) # target
kx = 0.1 # noise parameter
noise = (2.0*np.random.uniform(0, kx, m) - kx).reshape(m, 1)
Y = Y + noise # noisy target
# scaling of the target depending on the activation function
if (activation == 'sigmoid'):
Y_scaled = (Y/(1+kx) + 1)/2.0
elif (activation == 'tanh'):
Y_scaled = Y/(1+kx)
# number of the iteration for the training stage
iter_count = 20000
net.train(X, Y_scaled, iter_count) #training
# gained weights
trained_weights = net.weights
##########################################################################################
# PREDICTION
m_new = 40 #size of the prediction set
X_new = np.linspace(0, 4*math.pi, num = m_new).reshape(m_new, 1);
Y_new = net.predict(X_new, trained_weights) # prediction
#rescaling of the result
if (activation == 'sigmoid'):
Y_new = (2.0*Y_new - 1.0) * (1+kx)
elif (activation == 'tanh'):
Y_new = Y_new * (1+kx)
# visualization
plt.plot(X, Y)
plt.plot(X_new, Y_new, 'ro')
plt.show()
raw_input('press any key to exit')
更新
我想收回有关您代码中使用的训练方法的声明。网络确实可以在每次迭代中仅使用一个样本进行训练。我在使用 sigmoid 和 tanh 激活函数的在线训练中得到了有趣的结果:
使用 Sigmoid 的在线训练(成本函数和预测)
使用 Tanh 进行在线训练(成本函数和预测)
可以看出,选择 Sigmoid 作为激活函数可提供更好的性能。成本函数看起来不如离线训练时那么好,但至少它趋于下降。
我在你的实现中绘制了成本函数,它看起来也很不稳定:
用 sigmoid 甚至 ReLU 函数尝试您的代码可能是个好主意。
这是更新后的源代码。要在 online
和 offline
训练模式之间切换,只需更改 method
变量即可。
import numpy as np
import math
import matplotlib.pyplot as plt
class Neuralnet:
def __init__(self, neurons, activation):
self.weights = []
self.inputs = []
self.outputs = []
self.errors = []
self.rate = 0.2
self.activation = activation #sigmoid or tanh
self.neurons = neurons
self.L = len(self.neurons) #number of layers
eps = 0.12; #range for uniform distribution -eps..+eps
for layer in range(len(neurons)-1):
self.weights.append(np.random.uniform(-eps,eps,size=(neurons[layer+1], neurons[layer]+1)))
###################################################################################################
def train(self, X, Y, iter_count):
m = X.shape[0];
for layer in range(self.L):
self.inputs.append(np.empty([m, self.neurons[layer]]))
self.errors.append(np.empty([m, self.neurons[layer]]))
if (layer < self.L -1):
self.outputs.append(np.empty([m, self.neurons[layer]+1]))
else:
self.outputs.append(np.empty([m, self.neurons[layer]]))
#accumulate the cost function
J_history = np.zeros([iter_count, 1])
for i in range(iter_count):
self.feedforward(X)
J = self.cost(Y, self.outputs[self.L-1])
J_history[i, 0] = J
self.backpropagate(Y)
#plot the cost function to check the descent
#plt.plot(J_history)
#plt.show()
###################################################################################################
def cost(self, Y, H):
J = np.sum(np.sum(np.power((Y - H), 2), axis=0))/(2*m)
return J
###################################################################################################
def cost_online(self, min_x, max_x, iter_number):
h_arr = np.zeros([iter_number, 1])
y_arr = np.zeros([iter_number, 1])
for step in range(iter_number):
x = np.random.uniform(min_x, max_x, 1).reshape(1, 1)
self.feedforward(x)
h_arr[step, 0] = self.outputs[-1]
y_arr[step, 0] = np.sin(x)
J = np.sum(np.sum(np.power((y_arr - h_arr), 2), axis=0))/(2*iter_number)
return J
###################################################################################################
def feedforward(self, X):
m = X.shape[0];
self.outputs[0] = np.concatenate( (np.ones([m, 1]), X), axis=1)
for i in range(1, self.L):
self.inputs[i] = np.dot( self.outputs[i-1], self.weights[i-1].T )
if (self.activation == 'sigmoid'):
output_temp = self.sigmoid(self.inputs[i])
elif (self.activation == 'tanh'):
output_temp = np.tanh(self.inputs[i])
if (i < self.L - 1):
self.outputs[i] = np.concatenate( (np.ones([m, 1]), output_temp), axis=1)
else:
self.outputs[i] = output_temp
###################################################################################################
def backpropagate(self, Y):
self.errors[self.L-1] = self.outputs[self.L-1] - Y
for i in range(self.L - 2, 0, -1):
if (self.activation == 'sigmoid'):
self.errors[i] = np.dot( self.errors[i+1], self.weights[i][:, 1:] ) * self.sigmoid_prime(self.inputs[i])
elif (self.activation == 'tanh'):
self.errors[i] = np.dot( self.errors[i+1], self.weights[i][:, 1:] ) * (1 - self.outputs[i][:, 1:]*self.outputs[i][:, 1:])
for i in range(0, self.L-1):
grad = np.dot(self.errors[i+1].T, self.outputs[i]) / m
self.weights[i] = self.weights[i] - self.rate*grad
###################################################################################################
def sigmoid(self, z):
s = 1.0/(1.0 + np.exp(-z))
return s
###################################################################################################
def sigmoid_prime(self, z):
s = self.sigmoid(z)*(1 - self.sigmoid(z))
return s
###################################################################################################
def predict(self, X, weights):
m = X.shape[0];
self.inputs = []
self.outputs = []
self.weights = weights
for layer in range(self.L):
self.inputs.append(np.empty([m, self.neurons[layer]]))
if (layer < self.L -1):
self.outputs.append(np.empty([m, self.neurons[layer]+1]))
else:
self.outputs.append(np.empty([m, self.neurons[layer]]))
self.feedforward(X)
return self.outputs[self.L-1]
###################################################################################################
# MAIN PART
activation1 = 'sigmoid' #the input should be scaled into [0..1]
activation2 = 'tanh' #the input should be scaled into [-1..1]
activation = activation1
net = Neuralnet([1, 6, 1], activation) # structure of the NN and its activation function
method1 = 'online'
method2 = 'offline'
method = method1
kx = 0.1 #noise parameter
###################################################################################################
# TRAINING
if (method == 'offline'):
m = 1000 #size of the training set
X = np.linspace(0, 4*math.pi, num = m).reshape(m, 1); #input training set
Y = np.sin(X) #target
noise = (2.0*np.random.uniform(0, kx, m) - kx).reshape(m, 1)
Y = Y + noise #noisy target
#scaling of the target depending on the activation function
if (activation == 'sigmoid'):
Y_scaled = (Y/(1+kx) + 1)/2.0
elif (activation == 'tanh'):
Y_scaled = Y/(1+kx)
#number of the iteration for the training stage
iter_count = 20000
net.train(X, Y_scaled, iter_count) #training
elif (method == 'online'):
sampling_count = 100000 # number of samplings during the training stage
m = 1 #batch size
iter_count = sampling_count/m
for layer in range(net.L):
net.inputs.append(np.empty([m, net.neurons[layer]]))
net.errors.append(np.empty([m, net.neurons[layer]]))
if (layer < net.L -1):
net.outputs.append(np.empty([m, net.neurons[layer]+1]))
else:
net.outputs.append(np.empty([m, net.neurons[layer]]))
J_history = []
step_history = []
for i in range(iter_count):
X = np.random.uniform(0, 4*math.pi, m).reshape(m, 1)
Y = np.sin(X) #target
noise = (2.0*np.random.uniform(0, kx, m) - kx).reshape(m, 1)
Y = Y + noise #noisy target
#scaling of the target depending on the activation function
if (activation == 'sigmoid'):
Y_scaled = (Y/(1+kx) + 1)/2.0
elif (activation == 'tanh'):
Y_scaled = Y/(1+kx)
net.feedforward(X)
net.backpropagate(Y_scaled)
if (np.remainder(i, 1000) == 0):
J = net.cost_online(0, 4*math.pi, 1000)
J_history.append(J)
step_history.append(i)
plt.plot(step_history, J_history)
plt.title('Batch size ' + str(m) + ', rate ' + str(net.rate) + ', samples ' + str(sampling_count))
#plt.ylim([0, 0.1])
plt.show()
#gained weights
trained_weights = net.weights
##########################################################################################
# PREDICTION
m_new = 40 #size of the prediction set
X_new = np.linspace(0, 4*math.pi, num = m_new).reshape(m_new, 1);
Y_new = net.predict(X_new, trained_weights) #prediction
#rescaling of the result
if (activation == 'sigmoid'):
Y_new = (2.0*Y_new - 1.0) * (1+kx)
elif (activation == 'tanh'):
Y_new = Y_new * (1+kx)
#visualization
#fake sine curve to show the ideal signal
if (method == 'online'):
X = np.linspace(0, 4*math.pi, num = 100)
Y = np.sin(X)
plt.plot(X, Y)
plt.plot(X_new, Y_new, 'ro')
if (method == 'online'):
plt.title('Batch size ' + str(m) + ', rate ' + str(net.rate) + ', samples ' + str(sampling_count))
plt.ylim([-1.5, 1.5])
plt.show()
raw_input('press any key to exit')
现在我对您当前的代码有一些评论:
您的正弦函数如下所示:
def sine_example():
net = Neuralnet([1, 6, 1])
for step in range(100000):
x = np.random.normal()
net.feedforward([x])
net.backpropagate([np.tanh(np.sin(x))])
net.feedforward([3])
print(net.outputs[-1])
我不知道你为什么在目标输入中使用 tanh。如果你真的想使用正弦的 tanh 作为目标,你需要将它缩放到 [-1..1]
,因为 tanh(sin(x)) 返回范围 [- 0.76..0.76]
.
接下来是训练集的范围。您使用 x = np.random.normal()
生成样本。这是这样一个输入的分布:
在此之后,您希望您的网络预测 3
的正弦值,但网络在训练阶段几乎从未见过这个数字。我会在更广泛的范围内使用均匀分布来生成样本。
关于python - 神经网络反向传播算法在 Python 中不起作用,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/34649152/
我正在处理一组标记为 160 个组的 173k 点。我想通过合并最接近的(到 9 或 10 个组)来减少组/集群的数量。我搜索过 sklearn 或类似的库,但没有成功。 我猜它只是通过 knn 聚类
我有一个扁平数字列表,这些数字逻辑上以 3 为一组,其中每个三元组是 (number, __ignored, flag[0 or 1]),例如: [7,56,1, 8,0,0, 2,0,0, 6,1,
我正在使用 pipenv 来管理我的包。我想编写一个 python 脚本来调用另一个使用不同虚拟环境(VE)的 python 脚本。 如何运行使用 VE1 的 python 脚本 1 并调用另一个 p
假设我有一个文件 script.py 位于 path = "foo/bar/script.py"。我正在寻找一种在 Python 中通过函数 execute_script() 从我的主要 Python
这听起来像是谜语或笑话,但实际上我还没有找到这个问题的答案。 问题到底是什么? 我想运行 2 个脚本。在第一个脚本中,我调用另一个脚本,但我希望它们继续并行,而不是在两个单独的线程中。主要是我不希望第
我有一个带有 python 2.5.5 的软件。我想发送一个命令,该命令将在 python 2.7.5 中启动一个脚本,然后继续执行该脚本。 我试过用 #!python2.7.5 和http://re
我在 python 命令行(使用 python 2.7)中,并尝试运行 Python 脚本。我的操作系统是 Windows 7。我已将我的目录设置为包含我所有脚本的文件夹,使用: os.chdir("
剧透:部分解决(见最后)。 以下是使用 Python 嵌入的代码示例: #include int main(int argc, char** argv) { Py_SetPythonHome
假设我有以下列表,对应于及时的股票价格: prices = [1, 3, 7, 10, 9, 8, 5, 3, 6, 8, 12, 9, 6, 10, 13, 8, 4, 11] 我想确定以下总体上最
所以我试图在选择某个单选按钮时更改此框架的背景。 我的框架位于一个类中,并且单选按钮的功能位于该类之外。 (这样我就可以在所有其他框架上调用它们。) 问题是每当我选择单选按钮时都会出现以下错误: co
我正在尝试将字符串与 python 中的正则表达式进行比较,如下所示, #!/usr/bin/env python3 import re str1 = "Expecting property name
考虑以下原型(prototype) Boost.Python 模块,该模块从单独的 C++ 头文件中引入类“D”。 /* file: a/b.cpp */ BOOST_PYTHON_MODULE(c)
如何编写一个程序来“识别函数调用的行号?” python 检查模块提供了定位行号的选项,但是, def di(): return inspect.currentframe().f_back.f_l
我已经使用 macports 安装了 Python 2.7,并且由于我的 $PATH 变量,这就是我输入 $ python 时得到的变量。然而,virtualenv 默认使用 Python 2.6,除
我只想问如何加快 python 上的 re.search 速度。 我有一个很长的字符串行,长度为 176861(即带有一些符号的字母数字字符),我使用此函数测试了该行以进行研究: def getExe
list1= [u'%app%%General%%Council%', u'%people%', u'%people%%Regional%%Council%%Mandate%', u'%ppp%%Ge
这个问题在这里已经有了答案: Is it Pythonic to use list comprehensions for just side effects? (7 个答案) 关闭 4 个月前。 告
我想用 Python 将两个列表组合成一个列表,方法如下: a = [1,1,1,2,2,2,3,3,3,3] b= ["Sun", "is", "bright", "June","and" ,"Ju
我正在运行带有最新 Boost 发行版 (1.55.0) 的 Mac OS X 10.8.4 (Darwin 12.4.0)。我正在按照说明 here构建包含在我的发行版中的教程 Boost-Pyth
学习 Python,我正在尝试制作一个没有任何第 3 方库的网络抓取工具,这样过程对我来说并没有简化,而且我知道我在做什么。我浏览了一些在线资源,但所有这些都让我对某些事情感到困惑。 html 看起来
我是一名优秀的程序员,十分优秀!