- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我有一个包含全年数据的时间序列数据集(日期是索引)。每 15 分钟(全年)测量一次数据,这导致每天有 96 个时间步长。数据已经标准化。变量是相关的。除 VAR 外的所有变量都是天气指标。
VAR 在一天和一周内是季节性的(因为它在周末看起来有点不同,但每个周末都差不多)。 VAR 值是固定的。我想预测接下来两天(提前 192 步)和接下来 7 天(提前 672 步)的 VAR 值。
这是数据集的样本:
DateIdx VAR dewpt hum press temp
2017-04-17 00:00:00 0.369397 0.155039 0.386792 0.196721 0.238889
2017-04-17 00:15:00 0.363214 0.147287 0.429245 0.196721 0.233333
2017-04-17 00:30:00 0.357032 0.139535 0.471698 0.196721 0.227778
2017-04-17 00:45:00 0.323029 0.127907 0.429245 0.204918 0.219444
2017-04-17 01:00:00 0.347759 0.116279 0.386792 0.213115 0.211111
2017-04-17 01:15:00 0.346213 0.127907 0.476415 0.204918 0.169444
2017-04-17 01:30:00 0.259660 0.139535 0.566038 0.196721 0.127778
2017-04-17 01:45:00 0.205564 0.073643 0.523585 0.172131 0.091667
2017-04-17 02:00:00 0.157650 0.007752 0.481132 0.147541 0.055556
2017-04-17 02:15:00 0.122101 0.003876 0.476415 0.122951 0.091667
我决定在 Keras 中使用 LSTM。有了全年的数据,我将过去 329 天的数据用作训练数据,其余的用于训练期间的验证。train_X -> 包含整个措施,包括 329 天的 VARtrain_Y -> 仅包含 329 天的 VAR。该值向前移动一位。其余时间步转到 test_X 和 test_Y。
这是我准备 train_X 和 train_Y 的代码:
#X -> is the whole dataframe
#Y -> is a vector of VAR from whole dataframe, already shifted 1 step ahead
#329 * 96 = 31584
train_X = X[:31584]
train_X = train_X.reshape(train_X.shape[0],1,5)
train_Y = Y[:31584]
train_Y = train_Y.reshape(train_Y.shape[0],1)
为了预测下一个 VAR 值,我想使用过去的 672 个时间步长(整周测量)。为此,我设置了 batch_size=672
,因此“fit”命令如下所示:
history = model.fit(train_X, train_Y, epochs=50, batch_size=672, validation_data=(test_X, test_Y), shuffle=False)
这是我的网络架构:
model = models.Sequential()
model.add(layers.LSTM(672, input_shape=(None, 672), return_sequences=True))
model.add(layers.Dropout(0.2))
model.add(layers.LSTM(336, return_sequences=True))
model.add(layers.Dropout(0.2))
model.add(layers.LSTM(168, return_sequences=True))
model.add(layers.Dropout(0.2))
model.add(layers.LSTM(84, return_sequences=True))
model.add(layers.Dropout(0.2))
model.add(layers.LSTM(21, return_sequences=False))
model.add(layers.Dense(1))
model.compile(loss='mae', optimizer='adam')
model.summary()
从下图中我们可以看出,网络在 50 个 epoch 后学习了“一些东西”:
Plot from the learning process
为了预测目的,我准备了一组数据,其中包含最后 672 个步骤的所有值和 96 个没有 VAR 值的步骤——这应该被预测。我还使用了自回归,所以我在每次预测后更新 VAR 并将其用于下一次预测。
predX 数据集(用于预测)如下所示:
print(predX['VAR'][668:677])
DateIdx VAR
2017-04-23 23:00:00 0.307573
2017-04-23 23:15:00 0.278207
2017-04-23 23:30:00 0.284390
2017-04-23 23:45:00 0.309118
2017-04-24 00:00:00 NaN
2017-04-24 00:15:00 NaN
2017-04-24 00:30:00 NaN
2017-04-24 00:45:00 NaN
2017-04-24 01:00:00 NaN
Name: VAR, dtype: float64
这是我用来预测接下来的 96 个步骤的代码(自回归):
stepsAhead = 96
historySteps = 672
for i in range(0,stepsAhead):
j = i + historySteps
ypred = model.predict(predX.values[i:j].reshape(1,historySteps,5))
predX['VAR'][j] = ypred
不幸的是,结果很差,与预期相去甚远:
与前一天的结果相结合:
Predicted data combined with a previous day
除了“我做错了什么”这个问题,我想问几个问题:
Q1. 在模型整理过程中,我刚刚将整个历史按 672 大小分批处理。这是对的吗?我应该如何组织模型拟合的数据集?我有什么选择?我应该使用“滑动窗口”方法(如此处的链接:https://machinelearningmastery.com/promise-recurrent-neural-networks-time-series-forecasting/)吗?
Q2. 50 个 epoch 够吗?这里的常见做法是什么?也许网络不适合导致预测不佳?到目前为止,我尝试了 200 个 epoch,结果相同。
问题 3. 我应该尝试不同的架构吗?拟议的网络是否“足够大”以处理此类数据?也许“有状态”网络是这里的正确方法?
Q4. 我是否正确实现了自回归?是否有任何其他方法可以预测 future 的许多步骤,例如192 或 672 就像我的情况一样?
最佳答案
看起来对于如何组织数据来训练 RNN 存在困惑。那么让我们来回答问题:
(total_samples, 5)
,您就可以使用TimeseriesGenerator创建一个滑动窗口,它将为您生成 (batch_size, past_timesteps, 5)
。在这种情况下,您将使用 .fit_generator
来训练网络。n
个预测。单点预测模型可能如下所示:
model = Sequential()
model.add(LSTM(128, return_sequences=True, input_shape=(past_timesteps, 5))
model.add(LSTM(64))
model.add(Dense(1))
关于python - 喀拉斯 LSTM : a time-series multi-step multi-features forecasting - poor results,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/50742559/
我无法准确理解 LSTM 单元的范围——它如何映射到网络层。来自格雷夫斯 (2014): 在我看来,在单层网络中,layer = lstm 单元。这实际上如何在多层 rnn 中工作? 三层RNN LS
这是代码 model = Sequential() model.add(LSTM(256, input_shape=(None, 1), return_sequences=True)) model.a
为什么我们需要在pytorch中初始化LSTM中的隐藏状态h0。由于 h0 无论如何都会被计算并被覆盖?是不是很像 整合一个一 = 0 一个= 4 即使我们不做a=0,也应该没问题.. 最佳答案 重点
我正在尝试使用 LSTM 在 Deeplearning4j 中进行一些简单的时间序列预测,但我很难让它工作。 我有一个简单的文本文件,其中包含如下所示的数字列表,并希望网络学习预测下一个数字。 有没有
在大量阅读和绘制图表之后,我想我已经提出了一个模型,我可以将其用作更多测试我需要调整哪些参数和功能的基础。但是,我对如何实现以下测试用例感到困惑(所有数字都比最终模型小几个数量级,但我想从小处着手):
我正在尝试实现“Livelinet:用于预测教育视频中的活力的多模式深度循环神经网络”中的结构。 为了简单说明,我将 10 秒音频剪辑分成 10 个 1 秒音频剪辑,并从该 1 秒音频剪辑中获取频谱图
我正在 Tensorflow 中制作 LSTM 神经网络。 输入张量大小为 92。 import tensorflow as tf from tensorflow.contrib import rnn
我正在尝试 keras IMDB 数据的示例,数据形状是这样的: x_train shape: (25000, 80) 我只是把keras例子的原始代码改成了这样的代码: model = Sequen
我需要了解如何使用 torch.nn 的不同组件正确准备批量训练的输入。模块。具体来说,我希望为 seq2seq 模型创建一个编码器-解码器网络。 假设我有一个包含这三层的模块,按顺序: nn.Emb
我很难概念化 Keras 中有状态 LSTM 和无状态 LSTM 之间的区别。我的理解是,在每个批处理结束时,在无状态情况下“网络状态被重置”,而对于有状态情况,网络状态会为每个批处理保留,然后必须在
nn.Embedding() 是学习 LSTM 所必需的吗? 我在 PyTorch 中使用 LSTM 来预测 NER - 此处是类似任务的示例 - https://pytorch.org/tutori
我正在尝试找出适合我想要拟合的模型的正确语法。这是一个时间序列预测问题,我想在将时间序列输入 LSTM 之前使用一些密集层来改进时间序列的表示。 这是我正在使用的虚拟系列: import pandas
我在理解堆叠式 LSTM 网络中各层的输入-输出流时遇到了一些困难。假设我已经创建了一个如下所示的堆叠式 LSTM 网络: # parameters time_steps = 10 features
LSTM 类中的默认非线性激活函数是 tanh。我希望在我的项目中使用 ReLU。浏览文档和其他资源,我无法找到一种简单的方法来做到这一点。我能找到的唯一方法是定义我自己的自定义 LSTMCell,但
在 PyTorch 中,有一个 LSTM 模块,除了输入序列、隐藏状态和单元状态之外,它还接受 num_layers 参数,该参数指定我们的 LSTM 有多少层。 然而,还有另一个模块 LSTMCel
没什么好说的作为介绍:我想在 TensorFlow 中将 LSTM 堆叠在另一个 LSTM 上,但一直被错误阻止,我不太明白,更不用说单独解决了。 代码如下: def RNN(_X, _istate,
有人可以解释一下吗?我知道双向 LSTM 具有前向和反向传递,但是与单向 LSTM 相比,它有什么优势? 它们各自更适合什么? 最佳答案 LSTM 的核心是使用隐藏状态保留已经通过它的输入信息。 单向
我想构建一个带有特殊词嵌入的 LSTM,但我对它的工作原理有一些疑问。 您可能知道,一些 LSTM 对字符进行操作,因此它是字符输入,字符输出。我想做同样的事情,通过对单词的抽象来学习使用嵌套的 LS
我编写了一个LSTM回归模型。它是最后一个LSTM层的BATCH_SIZE=1和RETURN_Sequence=True的模型。我还设置了VERIFICATION_DATA和耐心进行培训。但似乎存在一
给定一个训练有素的 LSTM 模型,我想对单个时间步执行推理,即以下示例中的 seq_length = 1。在每个时间步之后,需要为下一个“批处理”记住内部 LSTM(内存和隐藏)状态。在推理的最开始
我是一名优秀的程序员,十分优秀!