- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我需要一个 Ubuntu 下的 C 特征问题求解器。为此,我试了一下 lapack 3.5.0 的 LAPACKE,实际上设法编写了下面的示例程序我从正交系统和对角矩阵构造的例子
EV = [
.6, -.8, 0
.8, .6, 0
0, 0, 1
];
D = [
2, 0, 0
0, -3, 0
0, 0, 0
];
通过产生 A := EV D EV'。
虽然下层程序运行良好,但结果出奇地不准确。输出结束:
...
Lambda: -3.07386, 0, 1.87386
EV = [
-0.788205 0 -0.615412
0.615412 0 -0.788205
-0 1 0
];
Info: 0
作为文档,我使用了 www.physics.orst.edu/~rubin/nacphy/lapack/routines/dsyev.html
我的完整来源:
/**
* eigen.cpp
*
* Given that you put version 3.5.0 into /opt/lapack/ compile this with:
* g++ eigen.cpp -I"/opt/lapack/lapack-3.5.0/lapacke/include" \
-L"/opt/lapack/lapack-3.5.0" -llapacke -llapack -lblas -lcblas
* The order of included libraries is important!
*/
#include <iostream>
#include <string>
#include <sstream>
// cstdlib needs including before clapack!
#include <cstdlib>
#include <cblas.h>
#include <lapacke.h>
using namespace std;
/** Column major style! */
string matrix2string(int m, int n, const double* A)
{
ostringstream oss;
for (int j=0;j<m;j++)
{
for (int k=0;k<n;k++)
{
oss << A[j+k*m] << "\t";
}
oss << endl;
}
return oss.str();
}
int main(int argc, char** argv)
{
//> Preliminaries. -------------------------------------------------
// Column Major Matrices for setting up the problem.
double D_orig[9] = {
2, 0, 0,
0, -3, 0,
0, 0, 0
};
double EV_orig[9] = {
3./5., 4./5., 0,
-4./5., 3./5., 0,
0, 0, 1
};
double A[9] = { 0,0,0,0,0,0,0,0,0 };
double dummy[9] = { 0,0,0,0,0,0,0,0,0 };
// A = EV D EV'
// dummy := D EV'
// A := EV dummy
cblas_dgemm(CblasColMajor,CblasNoTrans,CblasTrans,3,3,3,1,&D_orig[0],3,&EV_orig[0],3,0,&dummy[0],3);
cblas_dgemm(CblasColMajor,CblasNoTrans,CblasNoTrans,3,3,3,1,&EV_orig[0],3,&dummy[0],3,0,&A[0],3);
cout << "Set up the problem building A = EV D EV'" << endl <<
"EV = [" << endl << matrix2string(3,3,&EV_orig[0]).c_str() << "];" << endl <<
"D = [" << endl << matrix2string(3,3,&D_orig[0]).c_str() << "];" << endl <<
"A = [" << endl << matrix2string(3,3,&A[0]).c_str() << "];" << endl;
//< ----------------------------------------------------------------
//> Actual eigen value problem. ------------------------------------
char jobz = 'V'; // We want both vectors and values.
char uplo = 'L'; // 'L' means lower triangular input A as opposed to 'U'.
int N = 3; // Matrix dimension, or as they call it, 'order'.
// As stated by example ATriL is unnecessary. Just replace all of its
// occurences with plain A and all is well.
double ATriL[9] = { A[0], A[1], A[2], A[4], A[5], A[8], 0, 0, 0 }; // Lower Triangle of symmetric A.
// Note that it is larger than necessary. It will contain the eigenvectors at the end.
int lda = 3;
double w[3] = { 0, 0, 0 }; // Container for the eigenvalues.
int lwork = 15; // Size of the worker array. Set to (NB+2)*N where NB here is the largest blocksize.
// Note, however, that the definition of NB is more complex.
// Compare http://ftp.mcs.anl.gov/pub/MINPACK-2/lapack/ilaenv.f
double work[lwork];
int info = 0;
// "double symmetric eigenvalue problem" I presume.
// lapack_int LAPACKE_dsyev( int matrix_order, char jobz, char uplo, lapack_int n,
// double* a, lapack_int lda, double* w );
info = LAPACKE_dsyev(LAPACK_COL_MAJOR, jobz, uplo, N, &ATriL[0], lda, &work[0]);
// Note that the function takes no parameters lwork and w and that the
// eigenvalues appear to be written into work.
cout << "Ran dsyev(..) -- presumably 'double symmetric eigenvalue'." << endl <<
"Lambda: " << work[0] << ", " << work[1] << ", " << work[2] << endl <<
"EV = [" << endl << matrix2string(3,3,&ATriL[0]) << "];" << endl <<
"Info: " << info << endl;
//< ----------------------------------------------------------------
return EXIT_SUCCESS;
}
最后是实际问题:为什么结果如此不准确,我可以做些什么来改进它们?
最佳答案
结果是准确的 - 对于您提供给 lapack 的数据。很遗憾,您没有解决您想要解决的问题。
下三角部分与上三角部分仅适用于其他一些(内部?)算法。在您的简单情况下,您无需担心。如果你传递你的矩阵 A
而不是 ATril
你应该没问题。
更详细:您正在构建 double ATriL[9]
,使其显示为
A[0], A[4], 0,
A[1], A[5], 0,
A[2], A[8], 0
到lapack。当您现在告诉它使用该矩阵的下三角部分作为对称输入时 (char uplo = 'L';
),lapack 将有效地看到该矩阵
A[0], A[1], A[2], -1.2 2.4 0
A[1], A[5], A[8], == 2.4 0 0
A[2], A[8], 0 0 0 0
其特征向量实际上是你得到的那些。
关于c++ - LAPACKE 特征解不准确。如何改进?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/21701496/
我希望通过扫描线为 x 的每个值找到 y 的值来绘制椭圆。 对于普通椭圆,公式很容易找到:y = Sqrt[b^2 - (b^2 x^2)/a^2] 但是当椭圆的轴旋转时,我一直无法弄清楚如何计算 y
假设我有这个矩阵: 1 1 1 | 1 0 0 1 | 1 这个系统显然有无限的解决方案。 x1 = -x2 x3 = 1 x1 依赖于 x2,x2 是免费的,但我感兴趣的是 x3。是否有一种算法可以
我正在考虑使用神经网络在我正在构建的太空射击游戏中为我的敌人提供动力,我想知道;当网络没有一个明确的好的输出集时,你如何训练神经网络? 最佳答案 我目前正在研究神经网络,如果没有明确定义的输入和输出编
我需要一个针对受限资源环境(例如具有以下特征的二进制(十六进制数据)嵌入式系统)进行优化的快速解压缩例程: 数据面向 8 位(字节)(数据总线为 8 位宽)。 字节值的范围并不统一为 0 - 0xFF
PHP代码: $txt="John has cat and dog."; //plain text $txt=base64_encode($txt); //base64 encode $txt=gzd
程序从用户那里接收到一个正数k,并且应该检查方程有多少解 3*x+5*y=k 在许多解决方案的情况下,该函数采用所有解决方案中 |x-y| 的较大绝对值。如果只有一种解决方案,它会打印出来。例如: 如
我必须求解以下微分方程: 或 如果没有 F_1 术语,代码就很简单。但我无法用包含 F_1 项来解决它,尽管我知道解决方案应该看起来像阻尼谐振。 from scipy.integrate import
我知道这个问题是前缀和的变体,我只是在设置它时遇到了一些困难。 最佳答案 定义: P[i] = A[i+1] + A[i+2] + ... + A[n] Q[i] = A[1] + ... + A[i
在许多在线示例中,文件在 Java 中使用编码缓冲区进行(解)压缩。然而,对于 NIO,无需选择一个好的缓冲区大小。我找到了文件和套接字的示例,但是是否有用于压缩输入的 NIO channel (例如
我有一个形式为 A*x = B 的方程组,其中 [A] 是一个三对角系数矩阵。使用 Numpy 求解器 numpy.linalg.solve 我可以求解 x 的方程组。 请参阅下面的示例,了解我如何开
我试图回答这个问题,只使用递归(动态编程) http://en.wikipedia.org/wiki/Longest_increasing_subsequence 从这篇文章中,我意识到最有效的现有解
解决此问题的方法是,按照我发帖的其中一项建议,将DLL添加到GAC中。正如我在我的一份答复中所指出的那样,在需要运行此过程的环境中,可伸缩性将不可用。因此,不能选择简单的解决方案。为了解决这个问题,我
是否有专门描述 AAC-LC 标准的规范,以及实现编解码器的现实目标,而不是通用编解码器,而是针对特定 AAC-LC 格式,具有预定义的 channel 数和采样率? 是否有一些针对 AAC-LC 的
我想使用通用的“p”来定义多路复用器将有多少输出。输入和所有输出均为 1 位。输出、控制和输入可以很简单,例如: signal control : std_logic_vector(log 2 p
我正在尝试在 javascript 中使用一些三 Angular 函数来定位一些菱形 div,但似乎我的逻辑在某处失败了。 你可以看到我尝试了这个公式:pos + trig * dimension。我
关闭。这个问题需要更多focused .它目前不接受答案。 想改进这个问题吗? 更新问题,使其只关注一个问题 editing this post . 关闭 4 年前。 Improve this qu
我一直在考虑这两个 JSON 库: 谷歌 Gson JSON.Simple XStream Google Gson 非常棒,它可以序列化具有无参数构造函数的类对象。 JSON.Simple 非常简洁,
使用 Gekko 拟合数据的数值 ODE 解。 嗨,大家好! 我想知道是否可以使用 GEKKO 拟合 ODE 的系数。 我尝试复制 example given here 失败. 这是我想出的(但有缺陷
众所周知,ASCII使用7位来编码字符,所以用来表示文本的字节数总是小于文本字母的长度 例如: StringBuilder text = new StringBuilder(); In
我找到了一个 link其中显示了一个示例,当线性方程组有无限多个解时,Matlab mldivide 运算符 (\) 给出“特殊”解。 例如: A = [1 2 0; 0 4 3]; b = [8;
我是一名优秀的程序员,十分优秀!