gpt4 book ai didi

python - 用于多类分类的 ROC

转载 作者:太空狗 更新时间:2023-10-29 20:40:23 28 4
gpt4 key购买 nike

我正在进行不同的文本分类实验。现在我需要计算每个任务的 AUC-ROC。对于二进制分类,我已经使用以下代码使其工作:

scaler = StandardScaler(with_mean=False)

enc = LabelEncoder()
y = enc.fit_transform(labels)

feat_sel = SelectKBest(mutual_info_classif, k=200)

clf = linear_model.LogisticRegression()

pipe = Pipeline([('vectorizer', DictVectorizer()),
('scaler', StandardScaler(with_mean=False)),
('mutual_info', feat_sel),
('logistregress', clf)])
y_pred = model_selection.cross_val_predict(pipe, instances, y, cv=10)
# instances is a list of dictionaries

#visualisation ROC-AUC

fpr, tpr, thresholds = roc_curve(y, y_pred)
auc = auc(fpr, tpr)
print('auc =', auc)

plt.figure()
plt.title('Receiver Operating Characteristic')
plt.plot(fpr, tpr, 'b',
label='AUC = %0.2f'% auc)
plt.legend(loc='lower right')
plt.plot([0,1],[0,1],'r--')
plt.xlim([-0.1,1.2])
plt.ylim([-0.1,1.2])
plt.ylabel('True Positive Rate')
plt.xlabel('False Positive Rate')
plt.show()

但现在我需要为多类分类任务做这件事。我在某处读到我需要将标签二值化,但我真的不知道如何计算多类分类的 ROC。提示?

最佳答案

正如人们在评论中提到的那样,您必须使用 OneVsAll 方法将您的问题转换为二进制,因此您将拥有 n_class 条 ROC 曲线。

一个简单的例子:

from sklearn.metrics import roc_curve, auc
from sklearn import datasets
from sklearn.multiclass import OneVsRestClassifier
from sklearn.svm import LinearSVC
from sklearn.preprocessing import label_binarize
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt

iris = datasets.load_iris()
X, y = iris.data, iris.target

y = label_binarize(y, classes=[0,1,2])
n_classes = 3

# shuffle and split training and test sets
X_train, X_test, y_train, y_test =\
train_test_split(X, y, test_size=0.33, random_state=0)

# classifier
clf = OneVsRestClassifier(LinearSVC(random_state=0))
y_score = clf.fit(X_train, y_train).decision_function(X_test)

# Compute ROC curve and ROC area for each class
fpr = dict()
tpr = dict()
roc_auc = dict()
for i in range(n_classes):
fpr[i], tpr[i], _ = roc_curve(y_test[:, i], y_score[:, i])
roc_auc[i] = auc(fpr[i], tpr[i])

# Plot of a ROC curve for a specific class
for i in range(n_classes):
plt.figure()
plt.plot(fpr[i], tpr[i], label='ROC curve (area = %0.2f)' % roc_auc[i])
plt.plot([0, 1], [0, 1], 'k--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver operating characteristic example')
plt.legend(loc="lower right")
plt.show()

enter image description here enter image description here enter image description here

关于python - 用于多类分类的 ROC,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/45332410/

28 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com