gpt4 book ai didi

python - 估计由一组点(Alpha 形状??)生成的图像区域

转载 作者:太空狗 更新时间:2023-10-29 20:37:46 28 4
gpt4 key购买 nike

我在 example ASCII file 中有一组点显示二维图像。 enter image description here我想估计这些点填充的总面积。这个平面内有一些地方没有被任何点填充,因为这些区域已被屏蔽掉。我想估计面积可能实用的方法是应用凹包alpha 形状。我试过 this approach找到合适的 alpha 值,从而估计面积。

from shapely.ops import cascaded_union, polygonize
import shapely.geometry as geometry
from scipy.spatial import Delaunay
import numpy as np
import pylab as pl
from descartes import PolygonPatch
from matplotlib.collections import LineCollection
def plot_polygon(polygon):
fig = pl.figure(figsize=(10,10))
ax = fig.add_subplot(111)
margin = .3
x_min, y_min, x_max, y_max = polygon.bounds
ax.set_xlim([x_min-margin, x_max+margin])
ax.set_ylim([y_min-margin, y_max+margin])
patch = PolygonPatch(polygon, fc='#999999',
ec='#000000', fill=True,
zorder=-1)
ax.add_patch(patch)
return fig
def alpha_shape(points, alpha):
if len(points) < 4:
# When you have a triangle, there is no sense
# in computing an alpha shape.
return geometry.MultiPoint(list(points)).convex_hull
def add_edge(edges, edge_points, coords, i, j):
"""
Add a line between the i-th and j-th points,
if not in the list already
"""
if (i, j) in edges or (j, i) in edges:
# already added
return
edges.add( (i, j) )
edge_points.append(coords[ [i, j] ])
coords = np.array([point.coords[0]
for point in points])
tri = Delaunay(coords)
edges = set()
edge_points = []
# loop over triangles:
# ia, ib, ic = indices of corner points of the
# triangle
for ia, ib, ic in tri.vertices:
pa = coords[ia]
pb = coords[ib]
pc = coords[ic]
# Lengths of sides of triangle
a = np.sqrt((pa[0]-pb[0])**2 + (pa[1]-pb[1])**2)
b = np.sqrt((pb[0]-pc[0])**2 + (pb[1]-pc[1])**2)
c = np.sqrt((pc[0]-pa[0])**2 + (pc[1]-pa[1])**2)
# Semiperimeter of triangle
s = (a + b + c)/2.0
# Area of triangle by Heron's formula
area = np.sqrt(s*(s-a)*(s-b)*(s-c))
circum_r = a*b*c/(4.0*area)
# Here's the radius filter.
#print circum_r
if circum_r < 1.0/alpha:
add_edge(edges, edge_points, coords, ia, ib)
add_edge(edges, edge_points, coords, ib, ic)
add_edge(edges, edge_points, coords, ic, ia)
m = geometry.MultiLineString(edge_points)
triangles = list(polygonize(m))
return cascaded_union(triangles), edge_points
points=[]
with open("test.asc") as f:
for line in f:
coords=map(float,line.split(" "))
points.append(geometry.shape(geometry.Point(coords[0],coords[1])))
print geometry.Point(coords[0],coords[1])
x = [p.x for p in points]
y = [p.y for p in points]
pl.figure(figsize=(10,10))
point_collection = geometry.MultiPoint(list(points))
point_collection.envelope
convex_hull_polygon = point_collection.convex_hull
_ = plot_polygon(convex_hull_polygon)
_ = pl.plot(x,y,'o', color='#f16824')
concave_hull, edge_points = alpha_shape(points, alpha=0.001)
lines = LineCollection(edge_points)
_ = plot_polygon(concave_hull)
_ = pl.plot(x,y,'o', color='#f16824')

我得到了这个结果,但我希望这种方法可以检测到中间的洞。 enter image description here

更新
这是我的真实数据的样子: enter image description here

我的问题是,估计上述形状面积的最佳方法是什么?我无法弄清楚这段代码无法正常工作出了什么问题?!!任何帮助将不胜感激。

最佳答案

好的,这就是想法。 Delaunay 三角剖分将生成不分青红皂白的大三角形。这也会有问题,因为只会生成三角形。

因此,我们将生成您所谓的“模糊 Delaunay 三角剖分”。我们会将所有点放入 kd 树中,并针对每个点 p,查看它的 k 最近邻点。 kd-tree 使它变得更快。

对于那些 k 邻居中的每一个,找出到焦点 p 的距离。使用此距离生成权重。我们希望附近的点比更远的点更受青睐,因此指数函数 exp(-alpha*dist) 在这里是合适的。使用加权距离构建描述绘制每个点的概率的概率密度函数。

现在,多次从该分布中抽取。附近的点将经常被选择,而较远的点将被较少地选择。对于绘制的点,记下它为焦点绘制了多少次。结果是一个加权图,其中图中的每条边都连接附近的点,并根据选择对的频率进行加权。

现在,剔除图中权重太小的所有边。这些是可能没有连接的点。结果如下所示:

A fuzzy Delaunay triangulation

现在,让我们将所有剩余边放入 shapely 中.然后我们可以通过缓冲将边转换为非常小的多边形。像这样:

Buffered polygons

将多边形与覆盖整个区域的大多边形进行差分将产生用于三角剖分的多边形。可能还要等一下。结果如下所示:

Fuzzy Delaunay triangulation with coloured polygons

最后,剔除所有太大的多边形:

Fuzzy Delaunay triangulation with large polygons removed

#!/usr/bin/env python

import numpy as np
import matplotlib.pyplot as plt
import random
import scipy
import scipy.spatial
import networkx as nx
import shapely
import shapely.geometry
import matplotlib

dat = np.loadtxt('test.asc')
xycoors = dat[:,0:2]
xcoors = xycoors[:,0] #Convenience alias
ycoors = xycoors[:,1] #Convenience alias
npts = len(dat[:,0]) #Number of points

dist = scipy.spatial.distance.euclidean

def GetGraph(xycoors, alpha=0.0035):
kdt = scipy.spatial.KDTree(xycoors) #Build kd-tree for quick neighbor lookups
G = nx.Graph()
npts = np.max(xycoors.shape)
for x in range(npts):
G.add_node(x)
dist, idx = kdt.query(xycoors[x,:], k=10) #Get distances to neighbours, excluding the cenral point
dist = dist[1:] #Drop central point
idx = idx[1:] #Drop central point
pq = np.exp(-alpha*dist) #Exponential weighting of nearby points
pq = pq/np.sum(pq) #Convert to a PDF
choices = np.random.choice(idx, p=pq, size=50) #Choose neighbors based on PDF
for c in choices: #Insert neighbors into graph
if G.has_edge(x, c): #Already seen neighbor
G[x][c]['weight'] += 1 #Strengthen connection
else:
G.add_edge(x, c, weight=1) #New neighbor; build connection
return G

def PruneGraph(G,cutoff):
newg = G.copy()
bad_edges = set()
for x in newg:
for k,v in newg[x].items():
if v['weight']<cutoff:
bad_edges.add((x,k))
for b in bad_edges:
try:
newg.remove_edge(*b)
except nx.exception.NetworkXError:
pass
return newg


def PlotGraph(xycoors,G,cutoff=6):
xcoors = xycoors[:,0]
ycoors = xycoors[:,1]
G = PruneGraph(G,cutoff)
plt.plot(xcoors, ycoors, "o")
for x in range(npts):
for k,v in G[x].items():
plt.plot((xcoors[x],xcoors[k]),(ycoors[x],ycoors[k]), 'k-', lw=1)
plt.show()


def GetPolys(xycoors,G):
#Get lines connecting all points in the graph
xcoors = xycoors[:,0]
ycoors = xycoors[:,1]
lines = []
for x in range(npts):
for k,v in G[x].items():
lines.append(((xcoors[x],ycoors[x]),(xcoors[k],ycoors[k])))
#Get bounds of region
xmin = np.min(xycoors[:,0])
xmax = np.max(xycoors[:,0])
ymin = np.min(xycoors[:,1])
ymax = np.max(xycoors[:,1])
mls = shapely.geometry.MultiLineString(lines) #Bundle the lines
mlsb = mls.buffer(2) #Turn lines into narrow polygons
bbox = shapely.geometry.box(xmin,ymin,xmax,ymax) #Generate background polygon
polys = bbox.difference(mlsb) #Subtract to generate polygons
return polys

def PlotPolys(polys,area_cutoff):
fig, ax = plt.subplots(figsize=(8, 8))
for polygon in polys:
if polygon.area<area_cutoff:
mpl_poly = matplotlib.patches.Polygon(np.array(polygon.exterior), alpha=0.4, facecolor=np.random.rand(3,1))
ax.add_patch(mpl_poly)
ax.autoscale()
fig.show()


#Functional stuff starts here

G = GetGraph(xycoors, alpha=0.0035)

#Choose a value that rips off an appropriate amount of the left side of this histogram
weights = sorted([v['weight'] for x in G for k,v in G[x].items()])
plt.hist(weights, bins=20);plt.show()

PlotGraph(xycoors,G,cutoff=6) #Plot the graph to ensure our cut-offs were okay. May take a while
prunedg = PruneGraph(G,cutoff=6) #Prune the graph
polys = GetPolys(xycoors,prunedg) #Get polygons from graph

areas = sorted(p.area for p in polys)
plt.plot(areas)
plt.hist(areas,bins=20);plt.show()

area_cutoff = 150000
PlotPolys(polys,area_cutoff=area_cutoff)
good_polys = ([p for p in polys if p.area<area_cutoff])
total_area = sum([p.area for p in good_polys])

关于python - 估计由一组点(Alpha 形状??)生成的图像区域,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/41268547/

28 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com