- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我目前正在做一个对象跟踪的项目,使用过c++、opencv。我已经成功地使用 Farneback dense optical flow 来实现分割方法,例如 k 均值(使用每帧中的位移)。现在我想用 Lucas Kanade 稀疏方法做同样的事情。但是这个函数的输出是:
nextPts – 二维点的输出 vector (具有单精度浮点坐标),包含计算出的第二幅图像中输入特征的新位置;当传递 OPTFLOW_USE_INITIAL_FLOW 标志时, vector 必须与输入中的大小相同。
(如官方网站所述)
例如,我的问题是如何将结果转化为 Mat 流。到目前为止我已经尝试过:
//实现 Lucas Kanade 算法
cvCalcOpticalFlowPyrLK(frame1_1C, frame2_1C, pyramid1, pyramid2,
frame1_features, frame2_features, number_of_features,
optical_flow_window, 5, optical_flow_found_feature,
optical_flow_feature_error, optical_flow_termination_criteria,
0);
// Calculate each feature point's coordinates in every frame
CvPoint p,q;
p.x = (int) frame1_features[i].x;
p.y = (int) frame1_features[i].y;
q.x = (int) frame2_features[i].x;
q.y = (int) frame2_features[i].y;
// Creating the arrows for imshow
angle = atan2((double) p.y - q.y, (double) p.x - q.x);
hypotenuse = sqrt(square(p.y - q.y) + square(p.x - q.x));
/* Here we lengthen the arrow by a factor of three. */
q.x = (int) (p.x - 3 * hypotenuse * cos(angle));
q.y = (int) (p.y - 3 * hypotenuse * sin(angle));
cvLine(frame1, p, q, line_color, line_thickness, CV_AA, 0);
p.x = (int) (q.x + 9 * cos(angle + pi / 4));
p.y = (int) (q.y + 9 * sin(angle + pi / 4));
cvLine(frame1, p, q, line_color, line_thickness, CV_AA, 0);
p.x = (int) (q.x + 9 * cos(angle - pi / 4));
p.y = (int) (q.y + 9 * sin(angle - pi / 4));
cvLine(frame1, p, q, line_color, line_thickness, CV_AA, 0);
allocateOnDemand(&framenew, frame_size, IPL_DEPTH_8U, 3);
cvConvertImage(frame1, framenew, CV_CVTIMG_FLIP);
cvShowImage("Optical Flow", framenew);
这是光流演示。我应该如何获得类似于 Farneback 光流结果的 Mat 流?
更新:非常好的答案。但是现在我在显示 kmeans 图像时遇到了问题。我用 farneback :
cv::kmeans(m, K, bestLabels,
TermCriteria( CV_TERMCRIT_EPS + CV_TERMCRIT_ITER, 10, 1.0),
3, KMEANS_PP_CENTERS, centers);
int colors[K];
for (int i = 0; i < K; i++) {
colors[i] = 255 / (i + 1);
}
namedWindow("Kmeans", WINDOW_NORMAL);
Mat clustered = Mat(flow.rows, flow.cols, CV_32F);
for (int i = 0; i < flow.cols * flow.rows; i++) {
clustered.at<float>(i / flow.cols, i % flow.cols) =
(float) (colors[bestLabels.at<int>(0, i)]);
}
clustered.convertTo(clustered, CV_8U);
imshow("Kmeans", clustered);
有什么想法吗? ?
最佳答案
要获得类似于 Farneback 算法的图像,您必须首先了解输出是什么。
在您的 OpenCV 文档中:
prev(y,x) ~ next(y + flow(y,x)[1], x +flow(y,x)[0])
因此,它是一个矩阵,其中包含图像 1 和图像 2 之间的位移。假设您不计算的点没有移动 0,0;你可以模拟这个,你只需要为每个具有新位置的点 (x,y)
(x', y')
:
cv::Mat LKFlowMatrix(img.rows, img.cols, CV_32FC2, cv::Scalar(0,0));
LKFlowMatrix.at<cv::Vec2f>(y,x) = cv::Vec2f(x-x', y-y') ;
此外,不要忘记过滤状态为 0 的“未找到的点”
顺便说一下,你的函数不是它的 opencv c++ 版本:
cvCalcOpticalFlowPyrLK
在 c++ 中应该是 cv::calcOpticalFlowFarneback
cvShowImage
在c++中应该是cv::imshow
等等
**更新**
由于您需要的是 kmeans 的输入(我想那是 OpenCV 版本),并且您只想使用稀疏点,那么您可以这样做:
cv::Mat prevImg, nextImg;
// load your images
std::vector<cv:Point2f> initial_points, new_points;
// fill the initial points vector
std::vector<uchar> status;
std::vector<float> error;
cv::calcOpticalFlowPyrLK(prevImage, nextImage, initial_points, new_points, status, errors);
std::vector<cv::Vec2f> vectorForKMeans;
for(size_t t = 0; t < status.size(); t++){
if(status[t] != 0)
vectorForKmeans.push_back(cv::Vec2f(initial_points[i] - new_points[i]));
}
// Do kmeans to vectorForKMeans
关于c++ - 如何计算 Lucas Kanade 流,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/36399624/
这个问题在这里已经有了答案: Why filter() after flatMap() is "not completely" lazy in Java streams? (8 个答案) 关闭 6
我正在创建一个应用程序来从 Instagram 收集数据。我正在寻找像 Twitter 流 API 这样的流 API,这样我就可以自动实时收集数据而无需发送请求。 Instagram 有类似的 API
我正在使用 Apache Commons 在 Google App Engine 中上传一个 .docx 文件,如此链接中所述 File upload servlet .上传时,我还想使用 Apach
我尝试使用 DynamoDB 流和 AWS 提供的 Java DynamoDB 流 Kinesis 适配器捕获 DynamoDB 表更改。我正在 Scala 应用程序中使用 AWS Java 开发工具
我目前有一个采用 H.264 编码的 IP 摄像机流式视频 (RTSP)。 我想使用 FFmpeg 将此 H.264 编码流转换为另一个 RTSP 流,但 MPEG-2 编码。我该怎么做?我应该使用哪
Redis 流是否受益于集群模式?假设您有 10 个流,它们是分布在整个集群中还是都分布在同一节点上?我计划使用 Redis 流来实现真正的高吞吐量(200 万条消息/秒),所以我担心这种规模的 Re
这件事困扰了我一段时间。 所以我有一个 Product 类,它有一个 Image 列表(该列表可能为空)。 我想做 product.getImages().stream().filter(...) 但
是否可以使用 具有持久存储的 Redis 流 还是流仅限于内存数据? 我知道可以将 Redis 与核心数据结构的持久存储一起使用,但我已经能够理解是否也可以使用 Redis 中的流的持久存储。 最佳答
我开始学习 Elixir 并遇到了一个我无法轻松解决的挑战。 我正在尝试创建一个函数,该函数接受一个 Enumerable.t 并返回另一个 Enumerable.t ,其中包含下 n 个项目。它与
我试图从 readLine 调用创建一个无限的字符串流: import java.io.{BufferedReader, InputStreamReader} val in = new Buffere
你能帮我使用 Java 8 流 API 编写以下代码吗? SuperUser superUser = db.getSuperUser; for (final Client client : super
我正在尝试服用补品routeguide tutorial,并将客户端变成rocket服务器。我只是接受响应并将gRPC转换为字符串。 service RouteGuide { rpc GetF
流程代码可以是run here. 使用 flow,我有一个函数,它接受一个键值对对象并获取它的值 - 它获取的值应该是字符串、数字或 bool 值。 type ValueType = string
如果我有一个函数返回一个包含数据库信息的对象或一个空对象,如下所示: getThingFromDB: async function(id:string):Promise{ const from
我正在尝试使用javascript api和FB.ui将ogg音频文件发布到流中, 但是我不知道该怎么做。 这是我给FB.ui的电话: FB.ui( { method: '
我正在尝试删除工作区(或克隆它以使其看起来像父工作区,但我似乎两者都做不到)。但是,当我尝试时,我收到此消息:无法删除工作区 test_workspace,因为它有一个非空的默认组。 据我所知,这意味
可以使用 Stream|Map 来完成此操作,这样我就不需要将结果放入外部 HashMap 中,而是使用 .collect(Collectors.toMap(...)); 收集结果? Map rep
当我们从集合列表中获取 Stream 时,幕后到底发生了什么?我发现很多博客都说Stream不存储任何数据。如果这是真的,请考虑代码片段: List list = new ArrayList(); l
我对流及其工作方式不熟悉,我正在尝试获取列表中添加的特定对象的出现次数。 我找到了一种使用Collections来做到这一点的方法。其过程如下: for (int i = 0; i p.conten
我希望将一个 map 列表转换为另一个分组的 map 列表。 所以我有以下 map 列表 - List [{ "accId":"1", "accName":"TestAcc1", "accNumber
我是一名优秀的程序员,十分优秀!