- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我正在使用多光谱相机来收集数据。一个是近红外的,另一个是彩色的。不是两个摄像机,而是一个摄像机可以同时获取两种不同类型的图像。我可以使用一些API函数,例如J_Image_OpenStream。核心代码的两个部分如下所示。一个用于打开两个流(实际上它们在一个示例中,我必须使用它们,但是我对它们的含义不太清楚)并设置两个avi文件的保存路径并开始采集。
// Open stream
retval0 = J_Image_OpenStream(m_hCam[0], 0, reinterpret_cast<J_IMG_CALLBACK_OBJECT>(this), reinterpret_cast<J_IMG_CALLBACK_FUNCTION>(&COpenCVSample1Dlg::StreamCBFunc0), &m_hThread[0], (ViewSize0.cx*ViewSize0.cy*bpp0)/8);
if (retval0 != J_ST_SUCCESS) {
AfxMessageBox(CString("Could not open stream0!"), MB_OK | MB_ICONEXCLAMATION);
return;
}
TRACE("Opening stream0 succeeded\n");
retval1 = J_Image_OpenStream(m_hCam[1], 0, reinterpret_cast<J_IMG_CALLBACK_OBJECT>(this), reinterpret_cast<J_IMG_CALLBACK_FUNCTION>(&COpenCVSample1Dlg::StreamCBFunc1), &m_hThread[1], (ViewSize1.cx*ViewSize1.cy*bpp1)/8);
if (retval1 != J_ST_SUCCESS) {
AfxMessageBox(CString("Could not open stream1!"), MB_OK | MB_ICONEXCLAMATION);
return;
}
TRACE("Opening stream1 succeeded\n");
const char *filename0 = "C:\\Users\\shenyang\\Desktop\\test0.avi";
const char *filename1 = "C:\\Users\\shenyang\\Desktop\\test1.avi";
int fps = 10; //frame per second
int codec = -1;//choose the compression method
writer0 = cvCreateVideoWriter(filename0, codec, fps, CvSize(1296,966), 1);
writer1 = cvCreateVideoWriter(filename1, codec, fps, CvSize(1296,964), 1);
// Start Acquision
retval0 = J_Camera_ExecuteCommand(m_hCam[0], NODE_NAME_ACQSTART);
retval1 = J_Camera_ExecuteCommand(m_hCam[1], NODE_NAME_ACQSTART);
// Create two OpenCV named Windows used for displaying "BGR" and "INFRARED" images
cvNamedWindow("BGR");
cvNamedWindow("INFRARED");
void COpenCVSample1Dlg::StreamCBFunc0(J_tIMAGE_INFO * pAqImageInfo)
{
if (m_pImg0 == NULL)
{
// Create the Image:
// We assume this is a 8-bit monochrome image in this sample
m_pImg0 = cvCreateImage(cvSize(pAqImageInfo->iSizeX, pAqImageInfo->iSizeY), IPL_DEPTH_8U, 1);
}
// Copy the data from the Acquisition engine image buffer into the OpenCV Image obejct
memcpy(m_pImg0->imageData, pAqImageInfo->pImageBuffer, m_pImg0->imageSize);
// Display in the "BGR" window
cvShowImage("INFRARED", m_pImg0);
frame0 = m_pImg0;
cvWriteFrame(writer0, frame0);
}
void COpenCVSample1Dlg::StreamCBFunc1(J_tIMAGE_INFO * pAqImageInfo)
{
if (m_pImg1 == NULL)
{
// Create the Image:
// We assume this is a 8-bit monochrome image in this sample
m_pImg1 = cvCreateImage(cvSize(pAqImageInfo->iSizeX, pAqImageInfo->iSizeY), IPL_DEPTH_8U, 1);
}
// Copy the data from the Acquisition engine image buffer into the OpenCV Image obejct
memcpy(m_pImg1->imageData, pAqImageInfo->pImageBuffer, m_pImg1->imageSize);
// Display in the "BGR" window
cvShowImage("BGR", m_pImg1);
frame1 = m_pImg1;
cvWriteFrame(writer1, frame1);
}
/*writer0 = cvCreateVideoWriter(filename0, codec, fps, CvSize(1296,966), 1);
writer1 = cvCreateVideoWriter(filename1, codec, fps, CvSize(1296,964), 1);*/
//cvWriteFrame(writer0, frame0);
//cvWriteFrame(writer0, frame0);
public:
FACTORY_HANDLE m_hFactory; // Factory Handle
CAM_HANDLE m_hCam[MAX_CAMERAS]; // Camera Handles
THRD_HANDLE m_hThread[MAX_CAMERAS]; // Stream handles
char m_sCameraId[MAX_CAMERAS][J_CAMERA_ID_SIZE]; // Camera IDs
IplImage *m_pImg0 = NULL; // OpenCV Images
IplImage *m_pImg1 = NULL; // OpenCV Images
CvVideoWriter* writer0;
IplImage *frame0;
CvVideoWriter* writer1;
IplImage *frame1;
BOOL OpenFactoryAndCamera();
void CloseFactoryAndCamera();
void StreamCBFunc0(J_tIMAGE_INFO * pAqImageInfo);
void StreamCBFunc1(J_tIMAGE_INFO * pAqImageInfo);
void InitializeControls();
void EnableControls(BOOL bIsCameraReady, BOOL bIsImageAcquiring);
最佳答案
录制没有帧丢失的视频的正确方法是隔离两个任务(帧获取和帧序列化),以使它们不会相互影响(具体来说,这样序列化的波动不会占用捕获帧的时间) ,必须立即进行以防止丢帧)。
这可以通过将序列化(帧的编码并将其写入视频文件)委派给单独的线程,并使用某种同步队列将数据馈送到工作线程来实现。
以下是一个简单的示例,显示了如何完成此操作。由于我只有一台相机而不是您所拥有的相机,因此我将仅使用网络摄像头复制帧,但是一般原理也适用于您的情况。
样例代码
一开始我们有一些包括:
#include <opencv2/opencv.hpp>
#include <chrono>
#include <condition_variable>
#include <iostream>
#include <mutex>
#include <queue>
#include <thread>
// ============================================================================
using std::chrono::high_resolution_clock;
using std::chrono::duration_cast;
using std::chrono::microseconds;
// ============================================================================
std::queue
来保存
cv::Mat
实例,并使用
std::mutex
来提供同步。
std::condition_variable
用于在图像已插入队列(或设置了取消标志)时通知使用者,而简单的 bool 标志用于通知取消。
struct cancelled
作为从
pop()
引发的异常,因此我们可以通过取消队列来干净地终止worker。
// ============================================================================
class frame_queue
{
public:
struct cancelled {};
public:
frame_queue();
void push(cv::Mat const& image);
cv::Mat pop();
void cancel();
private:
std::queue<cv::Mat> queue_;
std::mutex mutex_;
std::condition_variable cond_;
bool cancelled_;
};
// ----------------------------------------------------------------------------
frame_queue::frame_queue()
: cancelled_(false)
{
}
// ----------------------------------------------------------------------------
void frame_queue::cancel()
{
std::unique_lock<std::mutex> mlock(mutex_);
cancelled_ = true;
cond_.notify_all();
}
// ----------------------------------------------------------------------------
void frame_queue::push(cv::Mat const& image)
{
std::unique_lock<std::mutex> mlock(mutex_);
queue_.push(image);
cond_.notify_one();
}
// ----------------------------------------------------------------------------
cv::Mat frame_queue::pop()
{
std::unique_lock<std::mutex> mlock(mutex_);
while (queue_.empty()) {
if (cancelled_) {
throw cancelled();
}
cond_.wait(mlock);
if (cancelled_) {
throw cancelled();
}
}
cv::Mat image(queue_.front());
queue_.pop();
return image;
}
// ============================================================================
storage_worker
,它将负责从同步队列中取出帧,并将它们编码为视频文件,直到队列被取消为止。
// ============================================================================
class storage_worker
{
public:
storage_worker(frame_queue& queue
, int32_t id
, std::string const& file_name
, int32_t fourcc
, double fps
, cv::Size frame_size
, bool is_color = true);
void run();
double total_time_ms() const { return total_time_ / 1000.0; }
private:
frame_queue& queue_;
int32_t id_;
std::string file_name_;
int32_t fourcc_;
double fps_;
cv::Size frame_size_;
bool is_color_;
double total_time_;
};
// ----------------------------------------------------------------------------
storage_worker::storage_worker(frame_queue& queue
, int32_t id
, std::string const& file_name
, int32_t fourcc
, double fps
, cv::Size frame_size
, bool is_color)
: queue_(queue)
, id_(id)
, file_name_(file_name)
, fourcc_(fourcc)
, fps_(fps)
, frame_size_(frame_size)
, is_color_(is_color)
, total_time_(0.0)
{
}
// ----------------------------------------------------------------------------
void storage_worker::run()
{
cv::VideoWriter writer(file_name_, fourcc_, fps_, frame_size_, is_color_);
try {
int32_t frame_count(0);
for (;;) {
cv::Mat image(queue_.pop());
if (!image.empty()) {
high_resolution_clock::time_point t1(high_resolution_clock::now());
++frame_count;
writer.write(image);
high_resolution_clock::time_point t2(high_resolution_clock::now());
double dt_us(static_cast<double>(duration_cast<microseconds>(t2 - t1).count()));
total_time_ += dt_us;
std::cout << "Worker " << id_ << " stored image #" << frame_count
<< " in " << (dt_us / 1000.0) << " ms" << std::endl;
}
}
} catch (frame_queue::cancelled& /*e*/) {
// Nothing more to process, we're done
std::cout << "Queue " << id_ << " cancelled, worker finished." << std::endl;
}
}
// ============================================================================
frame_queue
实例,每个图像流一个。接下来,我们创建两个
storage_worker
实例,每个队列一个。为了使事情有趣,我为每个设置了不同的编解码器。
run()
的
storage_worker
方法。准备好我们的消费者之后,我们就可以开始从相机捕获帧并将其提供给
frame_queue
实例。如上所述,我只有一个来源,因此我将同一帧的拷贝插入两个队列。
clone()
的
cv::Mat
方法进行深度复制,否则出于性能原因,我将插入对OpenCV
VideoCapture
使用的单个缓冲区的引用。那将意味着工作线程将获得对该单个镜像的引用,并且将不会有同步访问此共享镜像缓冲区。您还需要确保在您的方案中也不会发生这种情况。
// ============================================================================
int main()
{
// The video source -- for me this is a webcam, you use your specific camera API instead
// I only have one camera, so I will just duplicate the frames to simulate your scenario
cv::VideoCapture capture(0);
// Let's make it decent sized, since my camera defaults to 640x480
capture.set(CV_CAP_PROP_FRAME_WIDTH, 1920);
capture.set(CV_CAP_PROP_FRAME_HEIGHT, 1080);
capture.set(CV_CAP_PROP_FPS, 20.0);
// And fetch the actual values, so we can create our video correctly
int32_t frame_width(static_cast<int32_t>(capture.get(CV_CAP_PROP_FRAME_WIDTH)));
int32_t frame_height(static_cast<int32_t>(capture.get(CV_CAP_PROP_FRAME_HEIGHT)));
double video_fps(std::max(10.0, capture.get(CV_CAP_PROP_FPS))); // Some default in case it's 0
std::cout << "Capturing images (" << frame_width << "x" << frame_height
<< ") at " << video_fps << " FPS." << std::endl;
// The synchronized queues, one per video source/storage worker pair
std::vector<frame_queue> queue(2);
// Let's create our storage workers -- let's have two, to simulate your scenario
// and to keep it interesting, have each one write a different format
std::vector <storage_worker> storage;
storage.emplace_back(std::ref(queue[0]), 0
, std::string("foo_0.avi")
, CV_FOURCC('I', 'Y', 'U', 'V')
, video_fps
, cv::Size(frame_width, frame_height)
, true);
storage.emplace_back(std::ref(queue[1]), 1
, std::string("foo_1.avi")
, CV_FOURCC('D', 'I', 'V', 'X')
, video_fps
, cv::Size(frame_width, frame_height)
, true);
// And start the worker threads for each storage worker
std::vector<std::thread> storage_thread;
for (auto& s : storage) {
storage_thread.emplace_back(&storage_worker::run, &s);
}
// Now the main capture loop
int32_t const MAX_FRAME_COUNT(10);
double total_read_time(0.0);
int32_t frame_count(0);
for (; frame_count < MAX_FRAME_COUNT; ++frame_count) {
high_resolution_clock::time_point t1(high_resolution_clock::now());
// Try to read a frame
cv::Mat image;
if (!capture.read(image)) {
std::cerr << "Failed to capture image.\n";
break;
}
// Insert a copy into all queues
for (auto& q : queue) {
q.push(image.clone());
}
high_resolution_clock::time_point t2(high_resolution_clock::now());
double dt_us(static_cast<double>(duration_cast<microseconds>(t2 - t1).count()));
total_read_time += dt_us;
std::cout << "Captured image #" << frame_count << " in "
<< (dt_us / 1000.0) << " ms" << std::endl;
}
// We're done reading, cancel all the queues
for (auto& q : queue) {
q.cancel();
}
// And join all the worker threads, waiting for them to finish
for (auto& st : storage_thread) {
st.join();
}
if (frame_count == 0) {
std::cerr << "No frames captured.\n";
return -1;
}
// Report the timings
total_read_time /= 1000.0;
double total_write_time_a(storage[0].total_time_ms());
double total_write_time_b(storage[1].total_time_ms());
std::cout << "Completed processing " << frame_count << " images:\n"
<< " average capture time = " << (total_read_time / frame_count) << " ms\n"
<< " average write time A = " << (total_write_time_a / frame_count) << " ms\n"
<< " average write time B = " << (total_write_time_b / frame_count) << " ms\n";
return 0;
}
// ============================================================================
Capturing images (1920x1080) at 20 FPS.
Captured image #0 in 111.009 ms
Captured image #1 in 67.066 ms
Worker 0 stored image #1 in 94.087 ms
Captured image #2 in 62.059 ms
Worker 1 stored image #1 in 193.186 ms
Captured image #3 in 60.059 ms
Worker 0 stored image #2 in 100.097 ms
Captured image #4 in 78.075 ms
Worker 0 stored image #3 in 87.085 ms
Captured image #5 in 62.061 ms
Worker 0 stored image #4 in 95.092 ms
Worker 1 stored image #2 in 193.187 ms
Captured image #6 in 75.074 ms
Worker 0 stored image #5 in 95.093 ms
Captured image #7 in 63.061 ms
Captured image #8 in 64.061 ms
Worker 0 stored image #6 in 102.098 ms
Worker 1 stored image #3 in 201.195 ms
Captured image #9 in 76.074 ms
Worker 0 stored image #7 in 90.089 ms
Worker 0 stored image #8 in 91.087 ms
Worker 1 stored image #4 in 185.18 ms
Worker 0 stored image #9 in 82.08 ms
Worker 0 stored image #10 in 94.092 ms
Queue 0 cancelled, worker finished.
Worker 1 stored image #5 in 179.174 ms
Worker 1 stored image #6 in 106.102 ms
Worker 1 stored image #7 in 105.104 ms
Worker 1 stored image #8 in 103.101 ms
Worker 1 stored image #9 in 104.102 ms
Worker 1 stored image #10 in 104.1 ms
Queue 1 cancelled, worker finished.
Completed processing 10 images:
average capture time = 71.8599 ms
average write time A = 93.09 ms
average write time B = 147.443 ms
average write time B = 176.673 ms
关于c++ - 如何保存两台摄像机的数据而不影响它们的图像采集速度?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/37140643/
我正在尝试学习 Knockout 并尝试创建一个照片 uploader 。我已成功将一些图像存储在数组中。现在我想回帖。在我的 knockout 码(Javascript)中,我这样做: 我在 Jav
我正在使用 php 编写脚本。我的典型问题是如何在 mysql 中添加一个有很多替代文本和图像的问题。想象一下有机化学中具有苯结构的描述。 最有效的方法是什么?据我所知,如果我有一个图像,我可以在数据
我在两个图像之间有一个按钮,我想将按钮居中到图像高度。有人可以帮帮我吗? Entrar
下面的代码示例可以在这里查看 - http://dev.touch-akl.com/celebtrations/ 我一直在尝试做的是在 Canvas 上绘制 2 个图像(发光,然后耀斑。这些图像的链接
请检查此https://jsfiddle.net/rhbwpn19/4/ 图像预览对于第一篇帖子工作正常,但对于其他帖子则不然。 我应该在这里改变什么? function readURL(input)
我对 Canvas 有疑问。我可以用单个图像绘制 Canvas ,但我不能用单独的图像绘制每个 Canvas 。- 如果数据只有一个图像,它工作正常,但数据有多个图像,它不工作你能帮帮我吗? va
我的问题很简单。如何获取 UIImage 的扩展类型?我只能将图像作为 UIImage 而不是它的名称。图像可以是静态的,也可以从手机图库甚至文件路径中获取。如果有人可以为此提供一点帮助,将不胜感激。
我有一个包含 67 个独立路径的 SVG 图像。 是否有任何库/教程可以为每个路径创建单独的光栅图像(例如 PNG),并可能根据路径 ID 命名它们? 最佳答案 谢谢大家。我最终使用了两个答案的组合。
我想将鼠标悬停在一张图片(音乐专辑)上,然后播放一张唱片,所以我希望它向右移动并旋转一点,当它悬停时我希望它恢复正常动画片。它已经可以向右移动,但我无法让它随之旋转。我喜欢让它尽可能简单,因为我不是编
Retina iOS 设备不显示@2X 图像,它显示 1X 图像。 我正在使用 Xcode 4.2.1 Build 4D502,该应用程序的目标是 iOS 5。 我创建了一个测试应用(主/细节)并添加
我正在尝试从头开始以 Angular 实现图像 slider ,并尝试复制 w3school基于图像 slider 。 下面我尝试用 Angular 实现,谁能指导我如何使用 Angular 实现?
我正在尝试获取图像的图像数据,其中 w= 图像宽度,h = 图像高度 for (int i = x; i imageData[pos]>0) //Taking data (here is the pr
我的网页最初通过在 javascript 中动态创建图像填充了大约 1000 个缩略图。由于权限问题,我迁移到 suPHP。现在不用标准 标签本身 我正在通过这个 php 脚本进行检索 $file
我正在尝试将 python opencv 图像转换为 QPixmap。 我按照指示显示Page Link我的代码附在下面 img = cv2.imread('test.png')[:,:,::1]/2
我试图在这个 Repository 中找出语义分割数据集的 NYU-v2 . 我很难理解图像标签是如何存储的。 例如,给定以下图像: 对应的标签图片为: 现在,如果我在 OpenCV 中打开标签图像,
import java.util.Random; class svg{ public static void main(String[] args){ String f="\"
我有一张 8x8 的图片。 (位图 - 可以更改) 我想做的是能够绘制一个形状,给定一个 Path 和 Paint 对象到我的 SurfaceView 上。 目前我所能做的就是用纯色填充形状。我怎样才
要在页面上显示图像,你需要使用源属性(src)。src 指 source 。源属性的值是图像的 URL 地址。 定义图像的语法是: 在浏览器无法载入图像时,替换文本属性告诉读者她们失去的信息。此
**MMEditing是基于PyTorch的图像&视频编辑开源工具箱,支持图像和视频超分辨率(super-resolution)、图像修复(inpainting)、图像抠图(matting)、
我正在尝试通过资源文件将图像插入到我的程序中,如下所示: green.png other files 当我尝试使用 QImage 或 QPixm
我是一名优秀的程序员,十分优秀!