gpt4 book ai didi

python - 基于开始和结束列扩展数据框(速度)

转载 作者:太空狗 更新时间:2023-10-29 20:36:24 26 4
gpt4 key购买 nike

我有一个 pandas.DataFrame 包含 startend 列,以及一些额外的列。我想将此数据框扩展为一个时间序列,该时间序列从 start 值开始到 end 值结束,但复制我的其他列。到目前为止,我想出了以下内容:

import pandas as pd
import datetime as dt

df = pd.DataFrame()
df['start'] = [dt.datetime(2017, 4, 3), dt.datetime(2017, 4, 5), dt.datetime(2017, 4, 10)]
df['end'] = [dt.datetime(2017, 4, 10), dt.datetime(2017, 4, 12), dt.datetime(2017, 4, 17)]
df['country'] = ['US', 'EU', 'UK']
df['letter'] = ['a', 'b', 'c']

data_series = list()
for row in df.itertuples():
time_range = pd.bdate_range(row.start, row.end)
s = len(time_range)
data_series += (zip(time_range, [row.start]*s, [row.end]*s, [row.country]*s, [row.letter]*s))

columns_names = ['date', 'start', 'end', 'country', 'letter']
df = pd.DataFrame(data_series, columns=columns_names)

起始数据框:

       start        end country letter
0 2017-04-03 2017-04-10 US a
1 2017-04-05 2017-04-12 EU b
2 2017-04-10 2017-04-17 UK c

期望的输出:

         date      start        end country letter
0 2017-04-03 2017-04-03 2017-04-10 US a
1 2017-04-04 2017-04-03 2017-04-10 US a
2 2017-04-05 2017-04-03 2017-04-10 US a
3 2017-04-06 2017-04-03 2017-04-10 US a
4 2017-04-07 2017-04-03 2017-04-10 US a
5 2017-04-10 2017-04-03 2017-04-10 US a
6 2017-04-05 2017-04-05 2017-04-12 EU b
7 2017-04-06 2017-04-05 2017-04-12 EU b
8 2017-04-07 2017-04-05 2017-04-12 EU b
9 2017-04-10 2017-04-05 2017-04-12 EU b
10 2017-04-11 2017-04-05 2017-04-12 EU b
11 2017-04-12 2017-04-05 2017-04-12 EU b
12 2017-04-10 2017-04-10 2017-04-17 UK c
13 2017-04-11 2017-04-10 2017-04-17 UK c
14 2017-04-12 2017-04-10 2017-04-17 UK c
15 2017-04-13 2017-04-10 2017-04-17 UK c
16 2017-04-14 2017-04-10 2017-04-17 UK c
17 2017-04-17 2017-04-10 2017-04-17 UK c

我的解决方案的问题是,当将其应用于更大的数据框(主要是行)时,它无法足够快地获得结果。有人对我如何改进有任何想法吗?我也在考虑 numpy 中的解决方案。

最佳答案

首先,我们可以构建您需要的日期,同时通过列表 deltas 跟踪每一行中的天数:

dates = [pd.Series(pd.bdate_range(row[1].start, row[1].end))
for row in df[['start', 'end']].iterrows()]
deltas = [len(x) for x in dates]
dates = pd.Series(pd.concat(dates).values, name='date')

然后使用np.repeat 构建具有适当段长度的数据矩阵:

df2 = pd.DataFrame(np.repeat(df.values, deltas, axis=0), columns=df.columns)
df2 = df2.astype(dtype={"start": "datetime64", "end": "datetime64"})

然后将日期插入数据框的前面:

df2 = pd.concat([dates, df2], axis=1)

测试代码:

import pandas as pd
import numpy as np
import datetime as dt

df = pd.DataFrame()
df['start'] = [dt.datetime(2017, 4, 3), dt.datetime(2017, 4, 5),
dt.datetime(2017, 4, 10)]
df['end'] = [dt.datetime(2017, 4, 10), dt.datetime(2017, 4, 12),
dt.datetime(2017, 4, 17)]
df['country'] = ['US', 'EU', 'UK']
df['letter'] = ['a', 'b', 'c']

dates = [pd.Series(pd.bdate_range(row[1].start, row[1].end))
for row in df[['start', 'end']].iterrows()]
deltas = [len(x) for x in dates]
dates = pd.Series(pd.concat(dates).values, name='date')

df2 = pd.DataFrame(np.repeat(df.values, deltas, axis=0), columns=df.columns)
df2 = df2.astype(dtype={"start": "datetime64", "end": "datetime64"})
df2 = pd.concat([dates, df2], axis=1)
print(df2)

结果:

         date      start        end country letter
0 2017-04-03 2017-04-03 2017-04-10 US a
1 2017-04-04 2017-04-03 2017-04-10 US a
2 2017-04-05 2017-04-03 2017-04-10 US a
3 2017-04-06 2017-04-03 2017-04-10 US a
4 2017-04-07 2017-04-03 2017-04-10 US a
5 2017-04-10 2017-04-03 2017-04-10 US a
6 2017-04-05 2017-04-05 2017-04-12 EU b
7 2017-04-06 2017-04-05 2017-04-12 EU b
8 2017-04-07 2017-04-05 2017-04-12 EU b
9 2017-04-10 2017-04-05 2017-04-12 EU b
10 2017-04-11 2017-04-05 2017-04-12 EU b
11 2017-04-12 2017-04-05 2017-04-12 EU b
12 2017-04-10 2017-04-10 2017-04-17 UK c
13 2017-04-11 2017-04-10 2017-04-17 UK c
14 2017-04-12 2017-04-10 2017-04-17 UK c
15 2017-04-13 2017-04-10 2017-04-17 UK c
16 2017-04-14 2017-04-10 2017-04-17 UK c
17 2017-04-17 2017-04-10 2017-04-17 UK c

关于python - 基于开始和结束列扩展数据框(速度),我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/43832484/

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com