gpt4 book ai didi

python - 使用 statsmodel.formula.api 与 statsmodel.api 的 OLS

转载 作者:太空狗 更新时间:2023-10-29 20:34:04 32 4
gpt4 key购买 nike

谁能给我解释一下 statsmodel.formula.api 中的 ols 和 statsmodel.api 中的 ols 之间的区别?

使用 ISLR 文本中的广告数据,我使用两者运行了一个 ols,得到了不同的结果。然后我与 scikit-learn 的 LinearRegression 进行了比较。

import numpy as np
import pandas as pd
import statsmodels.formula.api as smf
import statsmodels.api as sm
from sklearn.linear_model import LinearRegression

df = pd.read_csv("C:\...\Advertising.csv")

x1 = df.loc[:,['TV']]
y1 = df.loc[:,['Sales']]

print "Statsmodel.Formula.Api Method"
model1 = smf.ols(formula='Sales ~ TV', data=df).fit()
print model1.params

print "\nStatsmodel.Api Method"
model2 = sm.OLS(y1, x1)
results = model2.fit()
print results.params

print "\nSci-Kit Learn Method"
model3 = LinearRegression()
model3.fit(x1, y1)
print model3.coef_
print model3.intercept_

输出如下:

Statsmodel.Formula.Api Method
Intercept 7.032594
TV 0.047537
dtype: float64

Statsmodel.Api Method
TV 0.08325
dtype: float64

Sci-Kit Learn Method
[[ 0.04753664]]
[ 7.03259355]

statsmodel.api 方法从 statsmodel.formula.api 和 scikit-learn 方法返回一个不同的电视参数。

statsmodel.api 运行的是哪种 ols 算法会产生不同的结果?有没有人有指向可以帮助回答这个问题的文档的链接?

最佳答案

今天遇到这个问题,想详细说明@stellasia 的回答,因为 statsmodels 文档可能有点模棱两可。

除非您使用 actual R-style string-formulas 在实例化 OLS 时,您需要在 statsmodels.formulas.api 和普通 statsmodels.api 下添加一个常量(实际上是一列 1) 。 @Chetan 在这里使用 R 风格的格式 (formula='Sales ~ TV'),所以他不会遇到这种微妙的情况,但对于具有一些 Python 知识但没有 R 背景的人来说,这可能非常令人困惑。

此外,您是否指定 hasconst无关紧要建立模型时的参数。 (这有点傻。)换句话说,除非您使用 R 风格的字符串公式,否则 hasconst 将被忽略,即使它应该是

[Indicate] whether the RHS includes a user-supplied constant

因为,在脚注中

No constant is added by the model unless you are using formulas.

下面的示例表明,如果不使用 R 风格的字符串公式,.formulas.api.api 都需要用户添加的 1 列向量。

# Generate some relational data
np.random.seed(123)
nobs = 25
x = np.random.random((nobs, 2))
x_with_ones = sm.add_constant(x, prepend=False)
beta = [.1, .5, 1]
e = np.random.random(nobs)
y = np.dot(x_with_ones, beta) + e

现在将 xy 放入 Excel 并运行 Data>Data Analysis>Regression,确保未选中“Constant is zero”。您将获得以下系数:

Intercept       1.497761024
X Variable 1 0.012073045
X Variable 2 0.623936056

现在,在 statsmodels.formula.apistatsmodels.api 中尝试在 x 而不是 x_with_ones 上运行此回归hasconst 设置为 NoneTrueFalse。您会看到,在这 6 种情况中的每一种情况下,都没有返回拦截。 (只有2个参数。)

import statsmodels.formula.api as smf
import statsmodels.api as sm

print('smf models')
print('-' * 10)
for hc in [None, True, False]:
model = smf.OLS(endog=y, exog=x, hasconst=hc).fit()
print(model.params)

# smf models
# ----------
# [ 1.46852293 1.8558273 ]
# [ 1.46852293 1.8558273 ]
# [ 1.46852293 1.8558273 ]

现在可以通过将 1.0 添加到 x 的列向量正确运行。您可以在此处使用 smf,但如果您不使用公式,则实际上没有必要。

print('sm models')
print('-' * 10)
for hc in [None, True, False]:
model = sm.OLS(endog=y, exog=x_with_ones, hasconst=hc).fit()
print(model.params)

# sm models
# ----------
# [ 0.01207304 0.62393606 1.49776102]
# [ 0.01207304 0.62393606 1.49776102]
# [ 0.01207304 0.62393606 1.49776102]

关于python - 使用 statsmodel.formula.api 与 statsmodel.api 的 OLS,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/30650257/

32 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com