gpt4 book ai didi

python - 更改 CNN 以使用 3D 卷积

转载 作者:太空狗 更新时间:2023-10-29 20:31:44 24 4
gpt4 key购买 nike

我正在使用来自 here 的代码( paper here ) 创建 GAN。我正在尝试将其应用到一个新领域,从他们在 MNIST 上的应用切换到 3D 大脑 MRI 图像。我的问题在于 GAN 本身的定义。

例如,他们用于定义生成模型的代码(采用 z_dim 维度的噪声并从 MNIST 分布生成图像,因此 28x28)是这样的,我的评论基于我认为它的工作原理:

def generate(self, z):
# start with noise in compact space
assert z.shape[1] == self.z_dim

# Fully connected layer that for some reason expands to latent * 64
output = tflib.ops.linear.Linear('Generator.Input', self.z_dim,
self.latent_dim * 64, z)
output = tf.nn.relu(output)
# Reshape the latent dimension into 4x4 MNIST
output = tf.reshape(output, [-1, self.latent_dim * 4, 4, 4])

# Reduce the latent dimension to get 8x8 MNIST
output = tflib.ops.deconv2d.Deconv2D('Generator.2', self.latent_dim * 4,
self.latent_dim * 2, 5, output)
output = tf.nn.relu(output) # 8 x 8
# To be able to get 28x28 later?
output = output[:, :, :7, :7] # 7 x 7

# Reduce more to get 14x14
output = tflib.ops.deconv2d.Deconv2D('Generator.3', self.latent_dim * 2,
self.latent_dim, 5, output)
output = tf.nn.relu(output) # 14 x 14

output = tflib.ops.deconv2d.Deconv2D('Generator.Output',
self.latent_dim, 1, 5, output)
output = tf.nn.sigmoid(output) # 28 x 28

if self.gen_params is None:
self.gen_params = tflib.params_with_name('Generator')

return tf.reshape(output, [-1, self.x_dim])

这是我使用 niftynet 卷积层的代码,其中 z_dim 和 latent_dim 与之前相同,均为 64,并且我添加了打印语句的结果:

def generate(self, z):
assert z.shape[1] == self.z_dim

generator_input = FullyConnectedLayer(self.latent_dim * 64,
acti_func='relu',
#with_bn = True,
name='Generator.Input')
output = generator_input(z, is_training=True)

print(output.shape) # (?, 4096)
#output = tflib.ops.linear.Linear('Generator.Input', self.z_dim,
# self.latent_dim * 64, z)
#output = tf.nn.relu(output)
output = tf.reshape(output, [-1, self.latent_dim * 4, 1, 18, 18]) # 4 x 4

print(output.shape) # (?, 256, 1, 18, 18)

generator_2 = DeconvolutionalLayer(self.latent_dim*2,
kernel_size=5,
stride=2,
acti_func='relu',
name='Generator.2')
output = generator_2(output, is_training=True)
#output = tflib.ops.deconv2d.Deconv2D('Generator.2', self.latent_dim * 4,
# self.latent_dim * 2, 5, output)
#output = tf.nn.relu(output) # 8 x 8
print(output.shape) # (?, 512, 2, 36, 128)
#output = output[:, :, :-1, :-1] # 7 x 7

generator_3 = DeconvolutionalLayer(self.latent_dim,
kernel_size=5,
stride=2,
acti_func='relu',
name='Generator.3')
output = generator_3(output, is_training=True)
#output = tflib.ops.deconv2d.Deconv2D('Generator.3', self.latent_dim * 2,
# self.latent_dim, 5, output)
#output = tf.nn.relu(output) # 14 x 14

print(output.shape) # (?, 1024, 4, 72, 64)

generator_out = DeconvolutionalLayer(1,
kernel_size=5,
stride=2,
acti_func='sigmoid',
name='Generator.Output')
output = generator_out(output, is_training=True)

#output = tflib.ops.deconv2d.Deconv2D('Generator.Output',
# self.latent_dim, 1, 5, output)
#output = tf.nn.sigmoid(output) # 28 x 28

if self.gen_params is None:
self.gen_params = tflib.params_with_name('Generator')

print(output.shape) # (?, 2048, 8, 144, 1)
print("Should be %s" % str(self.x_dim)) # [1, 19, 144, 144, 4]

return tf.reshape(output, self.x_dim)

我不太确定如何将 19 放入其中。目前我收到此错误。

ValueError: Dimension size must be evenly divisible by 2359296 but is 1575936 for 'Reshape_1' (op: 'Reshape') with input shapes: [?,2048,8,144,1], [5] and with input tensors computed as partial shapes: input1 = [1,19,144,144,4].

我对构建神经网络也比较陌生,我也有一些问题。当我们在 z 空间中已经有了紧凑的表示时,潜在空间的意义何在?如何确定“输出维度”的大小,即层构造函数中的第二个参数?

我也一直在关注使用 here 成功实现 CNN寻找灵感。谢谢!

主要编辑:

我取得了一些进展并获得了 tensorflow 来运行代码。但是,即使批处理大小为 1,我在尝试运行训练操作时也会遇到内存不足错误。我计算出一张图像的大小为 19 * 144 * 144 * 4 * 32(每像素位数)= ~50 MB,因此导致内存错误的不是数据。因为我基本上只是调整 GAN 参数直到它起作用,所以我的问题可能就在那里。以下是整个文件。

class MnistWganInv(object):
def __init__(self, x_dim=784, z_dim=64, latent_dim=64, batch_size=80,
c_gp_x=10., lamda=0.1, output_path='./'):
self.x_dim = [-1] + x_dim[1:]
self.z_dim = z_dim
self.latent_dim = latent_dim
self.batch_size = batch_size
self.c_gp_x = c_gp_x
self.lamda = lamda
self.output_path = output_path

self.gen_params = self.dis_params = self.inv_params = None

self.z = tf.placeholder(tf.float32, shape=[None, self.z_dim])
self.x_p = self.generate(self.z)

self.x = tf.placeholder(tf.float32, shape=x_dim)
self.z_p = self.invert(self.x)

self.dis_x = self.discriminate(self.x)
self.dis_x_p = self.discriminate(self.x_p)
self.rec_x = self.generate(self.z_p)
self.rec_z = self.invert(self.x_p)

self.gen_cost = -tf.reduce_mean(self.dis_x_p)

self.inv_cost = tf.reduce_mean(tf.square(self.x - self.rec_x))
self.inv_cost += self.lamda * tf.reduce_mean(tf.square(self.z - self.rec_z))

self.dis_cost = tf.reduce_mean(self.dis_x_p) - tf.reduce_mean(self.dis_x)

alpha = tf.random_uniform(shape=[self.batch_size, 1], minval=0., maxval=1.)
difference = self.x_p - self.x
interpolate = self.x + alpha * difference
gradient = tf.gradients(self.discriminate(interpolate), [interpolate])[0]
slope = tf.sqrt(tf.reduce_sum(tf.square(gradient), axis=1))
gradient_penalty = tf.reduce_mean((slope - 1.) ** 2)
self.dis_cost += self.c_gp_x * gradient_penalty

self.gen_params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='Generator')
self.inv_params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='Inverter')
self.dis_params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='Discriminator')

self.gen_train_op = tf.train.AdamOptimizer(
learning_rate=1e-4, beta1=0.9, beta2=0.999).minimize(
self.gen_cost, var_list=self.gen_params)
self.inv_train_op = tf.train.AdamOptimizer(
learning_rate=1e-4, beta1=0.9, beta2=0.999).minimize(
self.inv_cost, var_list=self.inv_params)
self.dis_train_op = tf.train.AdamOptimizer(
learning_rate=1e-4, beta1=0.9, beta2=0.999).minimize(
self.dis_cost, var_list=self.dis_params)

def generate(self, z):
print(z.shape)
assert z.shape[1] == self.z_dim

with tf.name_scope('Generator.Input') as scope:
generator_input = FullyConnectedLayer(self.latent_dim * 4 * 3 * 18 * 18,
acti_func='relu',
#with_bn = True,
name='Generator.Input')(z, is_training=True)

print(generator_input.shape)
#output = tflib.ops.linear.Linear('Generator.Input', self.z_dim,
# self.latent_dim * 64, z)
#output = tf.nn.relu(output)
generator_input = tf.reshape(generator_input, [-1, 3, 18, 18, self.latent_dim * 4]) # 4 x 4

print(generator_input.shape)

with tf.name_scope('Generator.2') as scope:
generator_2 = DeconvolutionalLayer(self.latent_dim*2,
kernel_size=5,
stride=2,
acti_func='relu',
name='Generator.2')(generator_input, is_training=True)
#output = tflib.ops.deconv2d.Deconv2D('Generator.2', self.latent_dim * 4,
# self.latent_dim * 2, 5, output)
#output = tf.nn.relu(output) # 8 x 8
print(generator_2.shape)

with tf.name_scope('Generator.3') as scope:
generator_3 = DeconvolutionalLayer(self.latent_dim,
kernel_size=5,
stride=2,
acti_func='relu',
name='Generator.3')(generator_2, is_training=True)
#output = tflib.ops.deconv2d.Deconv2D('Generator.3', self.latent_dim * 2,
# self.latent_dim, 5, output)
#output = tf.nn.relu(output) # 14 x 14

print(generator_3.shape)

with tf.name_scope('Generator.Output') as scope:
generator_out = DeconvolutionalLayer(4,
kernel_size=5,
stride=2,
acti_func='sigmoid',
name='Generator.Output')(generator_3, is_training=True)

#output = tflib.ops.deconv2d.Deconv2D('Generator.Output',
# self.latent_dim, 1, 5, output)
#output = tf.nn.sigmoid(output) # 28 x 28

if self.gen_params is None:
self.gen_params = tflib.params_with_name('Generator')

print(generator_out.shape)
generator_out = generator_out[:, :19, :, :, :]
print(generator_out.shape)
print("Should be %s" % str(self.x_dim))

return tf.reshape(generator_out, self.x_dim)

def discriminate(self, x):
input = tf.reshape(x, self.x_dim) # 28 x 28

with tf.name_scope('Discriminator.Input') as scope:
discriminator_input = ConvolutionalLayer(self.latent_dim,
kernel_size=5,
stride=2,
acti_func='leakyrelu',
name='Discriminator.Input')(input, is_training=True)

#output = tflib.ops.conv2d.Conv2D(
# 'Discriminator.Input', 1, self.latent_dim, 5, output, stride=2)
#output = tf.nn.leaky_relu(output) # 14 x 14
with tf.name_scope('Discriminator.2') as scope:
discriminator_2 = ConvolutionalLayer(self.latent_dim*2,
kernel_size=5,
stride=2,
acti_func='leakyrelu',
name='Discriminator.2')(discriminator_input, is_training=True)

#output = tflib.ops.conv2d.Conv2D(
# 'Discriminator.2', self.latent_dim, self.latent_dim * 2, 5,
# output, stride=2)
#output = tf.nn.leaky_relu(output) # 7 x 7
with tf.name_scope('Discriminator.3') as scope:
discriminator_3 = ConvolutionalLayer(self.latent_dim*4,
kernel_size=5,
stride=2,
acti_func='leakyrelu',
name='Discriminator.3')(discriminator_2, is_training=True)

#output = tflib.ops.conv2d.Conv2D(
# 'Discriminator.3', self.latent_dim * 2, self.latent_dim * 4, 5,
# output, stride=2)
#output = tf.nn.leaky_relu(output) # 4 x 4
discriminator_3 = tf.reshape(discriminator_3, [-1, self.latent_dim * 48])

with tf.name_scope('Discriminator.Output') as scope:
discriminator_out = FullyConnectedLayer(1,
name='Discriminator.Output')(discriminator_3, is_training=True)

#output = tflib.ops.linear.Linear(
# 'Discriminator.Output', self.latent_dim * 64, 1, output)
discriminator_out = tf.reshape(discriminator_out, [-1])

if self.dis_params is None:
self.dis_params = tflib.params_with_name('Discriminator')

return discriminator_out

def invert(self, x):
output = tf.reshape(x, self.x_dim) # 28 x 28

with tf.name_scope('Inverter.Input') as scope:
inverter_input = ConvolutionalLayer(self.latent_dim,
kernel_size=5,
stride=2,
#padding='VALID',
#w_initializer=self.initializers['w'],
#w_regularizer=self.regularizers['w'],
#b_initializer=self.initializers['b'],
#b_regularizer=self.regularizers['b'],
acti_func='leakyrelu',
#with_bn = True,
name='Inverter.Input')

#output = tflib.ops.conv2d.Conv2D(
# 'Inverter.Input', 1, self.latent_dim, 5, output, stride=2)
#output = tf.nn.leaky_relu(output) # 14 x 14

output = inverter_input(output, is_training=True)

with tf.name_scope('Inverter.2') as scope:
inverter_2 = ConvolutionalLayer(self.latent_dim*2,
kernel_size=5,
stride=2,
acti_func='leakyrelu',
name='Inverter.2')

output = inverter_2(output, is_training=True)

#output = tflib.ops.conv2d.Conv2D(
# 'Inverter.2', self.latent_dim, self.latent_dim * 2, 5, output,
# stride=2)
#output = tf.nn.leaky_relu(output) # 7 x 7

with tf.name_scope('Inverter.3') as scope:
inverter_3 = ConvolutionalLayer(self.latent_dim*4,
kernel_size=5,
stride=2,
acti_func='leakyrelu',
name='Inverter.3')

output = inverter_3(output, is_training=True)

#output = tflib.ops.conv2d.Conv2D(
# 'Inverter.3', self.latent_dim * 2, self.latent_dim * 4, 5,
# output, stride=2)
#output = tf.nn.leaky_relu(output) # 4 x 4
output = tf.reshape(output, [-1, self.latent_dim * 48])

with tf.name_scope('Inverter.4') as scope:
inverter_4 = FullyConnectedLayer(self.latent_dim*8,
acti_func='leakyrelu',
#with_bn = True,
name='Inverter.4')

output = inverter_4(output, is_training=True)

#output = tflib.ops.linear.Linear(
# 'Inverter.4', self.latent_dim * 64, self.latent_dim * 8, output)
#output = tf.nn.leaky_relu(output)
with tf.name_scope('Inverter.Output') as scope:
inverter_output = FullyConnectedLayer(self.z_dim,
acti_func='leakyrelu',
#with_bn = True,
name='Inverter.Output')

output = inverter_output(output, is_training=True)

#output = tflib.ops.linear.Linear(
# 'Inverter.Output', self.latent_dim * 8, self.z_dim, output)
output = tf.reshape(output, [-1, self.z_dim])

if self.inv_params is None:
self.inv_params = tflib.params_with_name('Inverter')

return output

def train_gen(self, sess, x, z):
_gen_cost, _ = sess.run([self.gen_cost, self.gen_train_op],
feed_dict={self.x: x, self.z: z})
return _gen_cost

def train_dis(self, sess, x, z):
_dis_cost, _ = sess.run([self.dis_cost, self.dis_train_op],
feed_dict={self.x: x, self.z: z})
return _dis_cost

def train_inv(self, sess, x, z):
_inv_cost, _ = sess.run([self.inv_cost, self.inv_train_op],
feed_dict={self.x: x, self.z: z})
return _inv_cost

def generate_from_noise(self, sess, noise, frame):
samples = sess.run(self.x_p, feed_dict={self.z: noise})
for i in range(batch_size):
save_array_as_nifty_volume(samples[i], "examples/img_{0:}.nii.gz".format(n*batch_size + i))
#tflib.save_images.save_images(
# samples.reshape((-1, 28, 28)),
# os.path.join(self.output_path, 'examples/samples_{}.png'.format(frame)))
return samples

def reconstruct_images(self, sess, images, frame):
reconstructions = sess.run(self.rec_x, feed_dict={self.x: images})
comparison = np.zeros((images.shape[0] * 2, images.shape[1]),
dtype=np.float32)
for i in range(images.shape[0]):
comparison[2 * i] = images[i]
comparison[2 * i + 1] = reconstructions[i]
for i in range(batch_size):
save_array_as_nifty_volume(comparison[i], "examples/img_{0:}.nii.gz".format(n*batch_size + i))
#tflib.save_images.save_images(
# comparison.reshape((-1, 28, 28)),
# os.path.join(self.output_path, 'examples/recs_{}.png'.format(frame)))
return comparison


if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--z_dim', type=int, default=64, help='dimension of z')
parser.add_argument('--latent_dim', type=int, default=64,
help='latent dimension')
parser.add_argument('--iterations', type=int, default=100000,
help='training steps')
parser.add_argument('--dis_iter', type=int, default=5,
help='discriminator steps')
parser.add_argument('--c_gp_x', type=float, default=10.,
help='coefficient for gradient penalty x')
parser.add_argument('--lamda', type=float, default=.1,
help='coefficient for divergence of z')
parser.add_argument('--output_path', type=str, default='./',
help='output path')
parser.add_argument('-config')
args = parser.parse_args()
config = parse_config(args.config)
config_data = config['data']

print("Loading data...")
# dataset iterator
dataloader = DataLoader(config_data)
dataloader.load_data()
batch_size = config_data['batch_size']
full_data_shape = [batch_size] + config_data['data_shape']
#train_gen, dev_gen, test_gen = tflib.mnist.load(args.batch_size, args.batch_size)

def inf_train_gen():
while True:
train_pair = dataloader.get_subimage_batch()
tempx = train_pair['images']
tempw = train_pair['weights']
tempy = train_pair['labels']
yield tempx, tempw, tempy

#_, _, test_data = tflib.mnist.load_data()
#fixed_images = test_data[0][:32]
#del test_data

tf.set_random_seed(326)
np.random.seed(326)
fixed_noise = np.random.randn(64, args.z_dim)
print("Initializing GAN...")
mnistWganInv = MnistWganInv(
x_dim=full_data_shape, z_dim=args.z_dim, latent_dim=args.latent_dim,
batch_size=batch_size, c_gp_x=args.c_gp_x, lamda=args.lamda,
output_path=args.output_path)

saver = tf.train.Saver(max_to_keep=1000)

with tf.Session() as session:
session.run(tf.global_variables_initializer())

images = noise = gen_cost = dis_cost = inv_cost = None
dis_cost_lst, inv_cost_lst = [], []
print("Starting training...")
for iteration in range(args.iterations):
for i in range(args.dis_iter):
noise = np.random.randn(batch_size, args.z_dim)
images, images_w, images_y = next(inf_train_gen())

dis_cost_lst += [mnistWganInv.train_dis(session, images, noise)]
inv_cost_lst += [mnistWganInv.train_inv(session, images, noise)]

gen_cost = mnistWganInv.train_gen(session, images, noise)
dis_cost = np.mean(dis_cost_lst)
inv_cost = np.mean(inv_cost_lst)

tflib.plot.plot('train gen cost', gen_cost)
tflib.plot.plot('train dis cost', dis_cost)
tflib.plot.plot('train inv cost', inv_cost)

if iteration % 100 == 99:
mnistWganInv.generate_from_noise(session, fixed_noise, iteration)
mnistWganInv.reconstruct_images(session, fixed_images, iteration)

if iteration % 1000 == 999:
save_path = saver.save(session, os.path.join(
args.output_path, 'models/model'), global_step=iteration)

if iteration % 1000 == 999:
dev_dis_cost_lst, dev_inv_cost_lst = [], []
for dev_images, _ in dev_gen():
noise = np.random.randn(batch_size, args.z_dim)
dev_dis_cost, dev_inv_cost = session.run(
[mnistWganInv.dis_cost, mnistWganInv.inv_cost],
feed_dict={mnistWganInv.x: dev_images,
mnistWganInv.z: noise})
dev_dis_cost_lst += [dev_dis_cost]
dev_inv_cost_lst += [dev_inv_cost]
tflib.plot.plot('dev dis cost', np.mean(dev_dis_cost_lst))
tflib.plot.plot('dev inv cost', np.mean(dev_inv_cost_lst))

if iteration < 5 or iteration % 100 == 99:
tflib.plot.flush(os.path.join(args.output_path, 'models'))

tflib.plot.tick()

最佳答案

您可能正在尝试优化比您的机器在内存中可以处理的更多参数。您在减少批量大小方面走在正确的轨道上,但无论好坏,这可能不是您做错的事情。

每个卷积层都有基于内核宽度、输入层和输出层的参数。这是一篇描述 CNN 维度分析的文章:https://towardsdatascience.com/understanding-and-calculating-the-number-of-parameters-in-convolution-neural-networks-cnns-fc88790d530d

然而,当您展平所有内容并开始使用全连接层时,可能会给您带来很多麻烦的是您必须优化的额外参数的数量。当前向量中的每个值都会获得另一个参数,以针对您在全连接层中使用的每个节点数进行优化。

如果您的初始图像向量非常大(在您的情况下),您将在全连接层中得到很多参数。看起来您正在使用 > 1 的步幅,因此维度会减少很多。但是,就您目前的问题而言,可能需要一些重型硬件才能解决。

一个想法是尝试通过在池化时增加步长来减少输入图像的维数或内部表示的维数。

关于python - 更改 CNN 以使用 3D 卷积,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/56973340/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com