- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我一直在尝试实现三维 BSP 树来呈现透明的单个对象(立方体、带有圆柱体的盒子等)。据我所知,这应该有效,但事实并非如此,我也不知道为什么。我读过的所有内容都涉及在二维或多个对象上使用的 BSP 树,所以我想知道我是否普遍误解了 BSP 树可以应用于哪些对象,而不是我的代码中有错误。我在网上看了很多东西,我的代码似乎和 Bretton Wade 的 (ftp://ftp.sgi.com/other/bspfaq/faq/bspfaq.html) 一样,所以如果有人有任何样本尤其是针对单个对象/透明度的 BSP 代码,那将是很棒的。
谢谢。
最佳答案
BSP 树可以抽象到任何 N 维空间,因为根据定义,N 维超平面会将空间一分为二。换句话说,对于 N 维空间中的给定点,它必须在超平面上,或者在超平面在 N 维空间中创建的二等分空间之一中。
对于 2D,将通过绘制一条线来创建 BSP 树,然后测试点位于该线的哪一侧。这是因为一条线平分了二维空间。对于 3D,您需要一个平面,该平面通常由您用作测试的多边形表面的法线形成。
因此您的算法将类似于以下内容:
此算法的代码在概念上类似于:
struct bsp_node
{
std::vector<poly_t> polys;
bsp_node* rchild;
bsp_node* lchild;
bsp_node(const poly_t& input): rchild(NULL), lchild(NULL)
{
polys.push_back(input);
}
};
std::queue<poly_t> poly_queue;
//...add all the polygons in the scene randomly to the queue
bsp_node* bsp_root = new bsp_node(poly_queue.front());
poly_queue.pop();
while(!poly_queue.empty())
{
//grab a poly from the queue
poly_t current_poly = poly_queue.front();
poly_queue.pop();
//search the binary tree
bsp_node* current_node = bsp_root;
bsp_node* prev_node = NULL;
bool stop_search = false;
while(current_node != NULL && !stop_search)
{
//use a plane defined by the current_node to test current_poly
int result = test(current_poly, current_node);
switch(result)
{
case COINCIDENT:
stop_search = true;
current_node->polys.push_back(current_poly);
break;
case IN_FRONT:
prev_node = current_node;
current_node = current_node->rchild;
break;
case BEHIND:
prev_node = current_node;
current_node = current_node->lchild;
break;
//split the poly and add the newly created polygons back to the queue
case SPLIT:
stop_search = true;
split_current_poly(current_poly, poly_queue);
break;
}
}
//if we reached a NULL child, that means we can add the poly to the tree
if (!current_node)
{
if (prev_node->rchild == NULL)
prev_node->rchild = new bsp_node(current_poly);
else
prev_node->lchild = new bsp_node(current_poly);
}
}
一旦您完成了树的创建,您就可以对树进行按顺序搜索并从后到前对多边形进行排序。对象是否透明并不重要,因为您是根据多边形本身而不是它们的 Material 属性进行排序。
关于c++ - BSP 树是否适用于单个透明对象?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/9949484/
关于 B 树与 B+ 树,网上有一个比较经典的问题:为什么 MongoDb 使用 B 树,而 MySQL 索引使用 B+ 树? 但实际上 MongoDb 真的用的是 B 树吗?
如何将 R* Tree 实现为持久(基于磁盘)树?保存 R* 树索引或保存叶值的文件的体系结构是什么? 注意:此外,如何在这种持久性 R* 树中执行插入、更新和删除操作? 注意事项二:我已经实现了一个
目前,我正在努力用 Java 表示我用 SML 编写的 AST 树,这样我就可以随时用 Java 遍历它。 我想知道是否应该在 Java 中创建一个 Node 类,其中包含我想要表示的数据,以及一个数
我之前用过这个库http://www.cs.umd.edu/~mount/ANN/ .但是,它们不提供范围查询实现。我猜是否有一个 C++ 范围查询实现(圆形或矩形),用于查询二维数据。 谢谢。 最佳
在进一步分析为什么MySQL数据库索引选择使用B+树之前,我相信很多小伙伴对数据结构中的树还是有些许模糊的,因此我们由浅入深一步步探讨树的演进过程,在一步步引出B树以及为什么MySQL数据库索引选择
书接上回,今天和大家一起动手来自己实现树。 相信通过前面的章节学习,大家已经明白树是什么了,今天我们主要针对二叉树,分别使用顺序存储和链式存储来实现树。 01、数组实现 我们在上一节中说过,
书节上回,我们接着聊二叉树,N叉树,以及树的存储。 01、满二叉树 如果一个二叉树,除最后一层节点外,每一层的节点数都达到最大值,即每个节点都有两个子节点,同时所有叶子节点都在最后一层,则这个
树是一种非线性数据结构,是以分支关系定义的层次结构,因此形态上和自然界中的倒挂的树很像,而数据结构中树根向上树叶向下。 什么是树? 01、定义 树是由n(n>=0)个元素节点组成的
操作系统的那棵“树” 今天从一颗 开始,我们看看如何从小树苗长成一颗苍天大树。 运转CPU CPU运转起来很简单,就是不断的从内存取值执行。 CPU没有好好运转 IO是个耗费时间的活,如果CPU在取值
我想为海洋生物学类(class)制作一个简单的系统发育树作为教育示例。我有一个具有分类等级的物种列表: Group <- c("Benthos","Benthos","Benthos","Be
我从这段代码中删除节点时遇到问题,如果我插入数字 12 并尝试删除它,它不会删除它,我尝试调试,似乎当它尝试删除时,它出错了树的。但是,如果我尝试删除它已经插入主节点的节点,它将删除它,或者我插入数字
B+ 树的叶节点链接在一起。将 B+ 树的指针结构视为有向图,它不是循环的。但是忽略指针的方向并将其视为链接在一起的无向叶节点会在图中创建循环。 在 Haskell 中,如何将叶子构造为父内部节点的子
我在 GWT 中使用树控件。我有一个自定义小部件,我将其添加为 TreeItem: Tree testTree = new Tree(); testTree.addItem(myWidget); 我想
它有点像混合树/链表结构。这是我定义结构的方式 struct node { nodeP sibling; nodeP child; nodeP parent; char
我编写了使用队列遍历树的代码,但是下面的出队函数生成错误,head = p->next 是否有问题?我不明白为什么这部分是错误的。 void Levelorder(void) { node *tmp,
例如,我想解析以下数组: var array1 = ["a.b.c.d", "a.e.f.g", "a.h", "a.i.j", "a.b.k"] 进入: var json1 = { "nod
问题 -> 给定一棵二叉树和一个和,确定该树是否具有从根到叶的路径,使得沿路径的所有值相加等于给定的和。 我的解决方案 -> public class Solution { public bo
我有一个创建 java 树的任务,它包含三列:运动名称、运动类别中的运动计数和上次更新。类似的东西显示在下面的图像上: 如您所见,有 4 种运动:水上运动、球类运动、跳伞运动和舞蹈运动。当我展开 sk
我想在 H2 数据库中实现 B+ Tree,但我想知道,B+ Tree 功能在 H2 数据库中可用吗? 最佳答案 H2 已经使用了 B+ 树(PageBtree 类)。 关于mysql - H2数据库
假设我们有 5 个字符串数组: String[] array1 = {"hello", "i", "cat"}; String[] array2 = {"hello", "i", "am"}; Str
我是一名优秀的程序员,十分优秀!