- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我们正在努力脱离SAS,转而使用Python/Pandas。但是,我们遇到的一件事是创建具有SAS例程灵活性的PROC SUMMARY
(AKA PROC MEANS
)的替代品。对于非SAS用户:PROC SUMMARY
只是一个例程,该例程会生成一个表,该表包含数据集中“所有观察值或一组观察值内变量的描述性统计信息”,以解释SAS文档。我们的需求只是全部功能的一小部分-输出一个我们拥有的表:
def wmean_ungrouped (d,w):
return (d.dot(w)).sum() / w.sum()
def wmean_grouped (group, var_name_in, var_name_weight):
d = group[var_name_in]
w = group[var_name_weight]
return (d * w).sum() / w.sum()
FUNCS = {
"mean" : np.mean ,
"sum" : np.sum ,
"count" : np.count_nonzero
}
def my_summary (
data ,
var_names_in ,
var_names_out ,
var_functions ,
var_name_weight = None ,
var_names_group = None
):
result = DataFrame()
if var_names_group is not None:
grouped = data.groupby (var_names_group)
for var_name_in, var_name_out, var_function in \
zip(var_names_in,var_names_out,var_functions):
if var_function == "wmean":
func = lambda x : wmean_grouped (x, var_name_in, var_name_weight)
result[var_name_out] = Series(grouped.apply(func))
else:
func = FUNCS[var_function]
result[var_name_out] = grouped[var_name_in].apply(func)
else:
for var_name_in, var_name_out, var_function in \
zip(var_names_in,var_names_out,var_functions):
if var_function == "wmean":
result[var_name_out] = \
Series(wmean_ungrouped(data[var_name_in], data[var_name_weight]))
else:
func = FUNCS[var_function]
result[var_name_out] = Series(func(data[var_name_in]))
return result
my_summary()
函数的示例调用:
my_summary (
data=df,
var_names_in=["x_1","x_1","x_1","x_1"] ,
var_names_out=[
"x_1_c","x_1_s","x_1_m","x_1_wm"
] ,
var_functions=["count","sum","mean","wmean"] ,
var_name_weight="val_1" ,
var_names_group=["Region","Category"]
)
my_summary()
可以工作,但是如您所见,它的实现不是最漂亮的。以下是主要问题:
DataFrame
和DataFrameGroupBy
具有将程序选择的归约函数应用于单列的不同方法。对于DataFrame
,我发现的唯一方法是直接调用func(data[var_name_in])
。 data[var_name_in].apply(func)
不起作用,因为apply()
上的Series
不会减少(与apply()
上的DataFrame
不同)。另一方面,对于DataFrameGroupBy
,我必须使用这种方法:grouped[var_name_in].apply(func)
。那是因为像func(grouped[var_name_in])
这样的东西不起作用(没有理由应该这样做)。Series
类型的参数,需要dot()
对其进行乘减。分组的函数最终会处理SeriesGroupBy
对象,并且必须使用*
运算符(对于加权平均函数代码,对the answer to this SO post的确认。)DataFrameGroupBy
获取DataFrame
对象而不对任何变量进行分组吗?然后,将减少代码路径,因为我们将专门处理DataFrameGroupBy
接口(interface)。 groupby(lambda x: True)
。这是他发现
in this SO post的一种解决方法(顺便说一句,Wes本人回答说需要
DataFrame.agg()
,这将达到相同的目的)。 @JohnE的出色解决方案使我们可以专门处理
DataFrameGroupBy
类型的对象,并立即减少大多数代码路径。由于我们只有
DataFrameGroupBy
实例,因此我可以使用一些可能的功能来进一步减少麻烦。基本上,所有函数都是根据需要生成的-“生成器”(在此处加引号,以免与Python生成器表达式混淆)采用两个参数:值列名称和权重列名称,在所有情况下都将忽略其中的第二个参数
wmean
。生成的函数始终应用在整个
DataFrameGroupBy
上,就像最初使用
wmean
一样,其参数是要使用的正确列名。我还用 Pandas 计算替换了所有的
np.*
实现,以便更好地处理
NaN
值。
FUNC_GENS = {
"mean" : lambda y,z : lambda x : x[y].mean(),
"sum" : lambda y,z : lambda x : x[y].sum() ,
"count" : lambda y,z : lambda x : x[y].count() ,
"wmean" : lambda y,z : lambda x : (x[y] * x[z]).sum() / x[z].sum()
}
def my_summary (
data ,
var_names_in ,
var_names_out ,
var_functions ,
var_name_weight = None ,
var_names_group = None ):
result = pd.DataFrame()
if var_names_group is None:
grouped = data.groupby (lambda x: True)
else:
grouped = data.groupby (var_names_group)
for var_name_in, var_name_out, var_function in \
zip(var_names_in,var_names_out,var_functions):
func_gen = FUNC_GENS[var_function]
func = func_gen (var_name_in, var_name_weight)
result[var_name_out] = grouped.apply(func)
return result
DataFrame.agg()
和it was indeed added in version 0.20.0以及 Series.agg()
。 NamedAgg
inputs to the agg()
function 最佳答案
好吧,这是一个确实可以解决两个问题的快捷方式(但对于加权均值仍然需要一个不同的功能)。通常,它使用here技巧(贷记@DSM)通过执行groupby(lamda x: True)
来解决您的空组。如果在手段之类的东西上有一个“权重”的扭曲,但据我所知没有,那将是很棒的。显然有一个基于numpy的here加权分位数的程序包,但我对此一无所知。伟大的项目顺便说一句!
(请注意,名称与您的名称基本相同,我只是在wmean_grouped和my_summary中添加了“2”,否则可以使用相同的调用接口(interface))
def wmean_grouped2 (group, var_name_in, var_name_weight):
d = group[var_name_in]
w = group[var_name_weight]
return (d * w).sum() / w.sum()
FUNCS = { "mean" : np.mean ,
"sum" : np.sum ,
"count" : np.count_nonzero }
def my_summary2 (
data ,
var_names_in ,
var_names_out ,
var_functions ,
var_name_weight = None ,
var_names_group = None ):
result = pd.DataFrame()
if var_names_group is None:
grouped = data.groupby (lambda x: True)
else:
grouped = data.groupby (var_names_group)
for var_name_in, var_name_out, var_function in \
zip(var_names_in,var_names_out,var_functions):
if var_function == "wmean":
func = lambda x : wmean_grouped2 (x, var_name_in, var_name_weight)
result[var_name_out] = pd.Series(grouped.apply(func))
else:
func = FUNCS[var_function]
result[var_name_out] = grouped[var_name_in].apply(func)
return result
关于python - 在Python/Pandas中创建部分SAS PROC Summary替换,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/29926940/
我正在处理一组标记为 160 个组的 173k 点。我想通过合并最接近的(到 9 或 10 个组)来减少组/集群的数量。我搜索过 sklearn 或类似的库,但没有成功。 我猜它只是通过 knn 聚类
我有一个扁平数字列表,这些数字逻辑上以 3 为一组,其中每个三元组是 (number, __ignored, flag[0 or 1]),例如: [7,56,1, 8,0,0, 2,0,0, 6,1,
我正在使用 pipenv 来管理我的包。我想编写一个 python 脚本来调用另一个使用不同虚拟环境(VE)的 python 脚本。 如何运行使用 VE1 的 python 脚本 1 并调用另一个 p
假设我有一个文件 script.py 位于 path = "foo/bar/script.py"。我正在寻找一种在 Python 中通过函数 execute_script() 从我的主要 Python
这听起来像是谜语或笑话,但实际上我还没有找到这个问题的答案。 问题到底是什么? 我想运行 2 个脚本。在第一个脚本中,我调用另一个脚本,但我希望它们继续并行,而不是在两个单独的线程中。主要是我不希望第
我有一个带有 python 2.5.5 的软件。我想发送一个命令,该命令将在 python 2.7.5 中启动一个脚本,然后继续执行该脚本。 我试过用 #!python2.7.5 和http://re
我在 python 命令行(使用 python 2.7)中,并尝试运行 Python 脚本。我的操作系统是 Windows 7。我已将我的目录设置为包含我所有脚本的文件夹,使用: os.chdir("
剧透:部分解决(见最后)。 以下是使用 Python 嵌入的代码示例: #include int main(int argc, char** argv) { Py_SetPythonHome
假设我有以下列表,对应于及时的股票价格: prices = [1, 3, 7, 10, 9, 8, 5, 3, 6, 8, 12, 9, 6, 10, 13, 8, 4, 11] 我想确定以下总体上最
所以我试图在选择某个单选按钮时更改此框架的背景。 我的框架位于一个类中,并且单选按钮的功能位于该类之外。 (这样我就可以在所有其他框架上调用它们。) 问题是每当我选择单选按钮时都会出现以下错误: co
我正在尝试将字符串与 python 中的正则表达式进行比较,如下所示, #!/usr/bin/env python3 import re str1 = "Expecting property name
考虑以下原型(prototype) Boost.Python 模块,该模块从单独的 C++ 头文件中引入类“D”。 /* file: a/b.cpp */ BOOST_PYTHON_MODULE(c)
如何编写一个程序来“识别函数调用的行号?” python 检查模块提供了定位行号的选项,但是, def di(): return inspect.currentframe().f_back.f_l
我已经使用 macports 安装了 Python 2.7,并且由于我的 $PATH 变量,这就是我输入 $ python 时得到的变量。然而,virtualenv 默认使用 Python 2.6,除
我只想问如何加快 python 上的 re.search 速度。 我有一个很长的字符串行,长度为 176861(即带有一些符号的字母数字字符),我使用此函数测试了该行以进行研究: def getExe
list1= [u'%app%%General%%Council%', u'%people%', u'%people%%Regional%%Council%%Mandate%', u'%ppp%%Ge
这个问题在这里已经有了答案: Is it Pythonic to use list comprehensions for just side effects? (7 个答案) 关闭 4 个月前。 告
我想用 Python 将两个列表组合成一个列表,方法如下: a = [1,1,1,2,2,2,3,3,3,3] b= ["Sun", "is", "bright", "June","and" ,"Ju
我正在运行带有最新 Boost 发行版 (1.55.0) 的 Mac OS X 10.8.4 (Darwin 12.4.0)。我正在按照说明 here构建包含在我的发行版中的教程 Boost-Pyth
学习 Python,我正在尝试制作一个没有任何第 3 方库的网络抓取工具,这样过程对我来说并没有简化,而且我知道我在做什么。我浏览了一些在线资源,但所有这些都让我对某些事情感到困惑。 html 看起来
我是一名优秀的程序员,十分优秀!