gpt4 book ai didi

python - Numpy 逐 block 减少操作

转载 作者:太空狗 更新时间:2023-10-29 20:23:48 27 4
gpt4 key购买 nike

我认为自己是一位经验丰富的 numpy 用户,但我无法找到以下问题的解决方案。假设有以下数组:

# sorted array of times
t = numpy.cumsum(numpy.random.random(size = 100))
# some values associated with the times
x = numpy.random.random(size=100)
# some indices into the time/data array
indices = numpy.cumsum(numpy.random.randint(low = 1, high=10,size = 20))
indices = indices[indices <90] # respect size of 100
if len(indices) % 2: # make number of indices even
indices = indices[:-1]

# select some starting and end indices
istart = indices[0::2]
iend = indices[1::2]

我现在想要的是在给定由 istartiend 表示的间隔的情况下减少值数组 x。即

# e.g. use max reduce, I'll probably also need mean and stdv
what_i_want = numpy.array([numpy.max(x[is:ie]) for is,ie in zip(istart,iend)])

我已经在谷歌上搜索了很多,但我所能找到的只是通过 stride_tricks 进行的分 block 操作,它只允许常规 block 。如果不执行 python 循环,我无法找到解决方案:-(在我的实际应用程序中,数组要大得多,性能也很重要,所以我暂时使用 numba.jit

我是否缺少任何能够做到这一点的 numpy 函数?

最佳答案

你看过ufunc.reduceat了吗? ?使用 np.maximum,您可以执行以下操作:

>>> np.maximum.reduceat(x, indices)

沿切片 x[indices[i]:indices[i+1]] 产生最大值。要得到你想要的 (x[indices[2i]:indices[2i+1]),你可以这样做

>>> np.maximum.reduceat(x, indices)[::2]

如果您不介意 x[inidices[2i-1]:indices[2i]] 的额外计算。这会产生以下结果:

>>> numpy.array([numpy.max(x[ib:ie]) for ib,ie in zip(istart,iend)])
array([ 0.60265618, 0.97866485, 0.78869449, 0.79371198, 0.15463711,
0.72413702, 0.97669218, 0.86605981])

>>> np.maximum.reduceat(x, indices)[::2]
array([ 0.60265618, 0.97866485, 0.78869449, 0.79371198, 0.15463711,
0.72413702, 0.97669218, 0.86605981])

关于python - Numpy 逐 block 减少操作,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/40723845/

27 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com