- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我的数据是这样的:
powerplantname, latitude, longitude, powergenerated
A, -92.3232, 100.99, 50
B, <lat>, <long>, 10
C, <lat>, <long>, 20
D, <lat>, <long>, 40
E, <lat>, <long>, 5
我希望能够将数据聚类成 N 个聚类(比如 3 个)。通常我会使用 kmeans:
import numpy as np
import matplotlib.pyplot as plt
from scipy.cluster.vq import kmeans2, whiten
coordinates= np.array([
[lat, long],
[lat, long],
...
[lat, long]
])
x, y = kmeans2(whiten(coordinates), 3, iter = 20)
plt.scatter(coordinates[:,0], coordinates[:,1], c=y);
plt.show()
这个问题是它没有考虑任何权重(在这种情况下,我的 powergenerated 值)我希望理想情况下让我的集群考虑“powergenerated”值,试图让集群不仅在空间上接近,但也有接近相对相等的总发电量。
我应该使用 kmeans(或其他方法)来执行此操作吗?还是我应该使用其他更好的方法来解决这个问题?
最佳答案
Or is there something else I should be using for this problem that would be better?
为了同时考虑中心之间的地理距离和产生的功率,您应该定义一个适当的指标。下面的函数通过 haversine formula 计算地球表面两点之间的经纬度距离。加上所产生的功率差乘以加权因子的绝对值。权值的大小决定了距离和幂差异在聚类过程中的相对影响。
import numpy as np
def custom_metric(central_1, central_2, weight=1):
lat1, lng1, pow1 = central_1
lat2, lng2, pow2 = central_2
lat1, lat2, lng1, lng2 = np.deg2rad(np.asarray([lat1, lat2, lng1, lng2]))
dlat = lat2 - lat1
dlng = lng2 - lng1
h = (1 - np.cos(dlat))/2. + np.cos(lat1)*np.cos(lat2)*(1 - np.cos(dlng))/2.
km = 2*6371*np.arcsin(np.sqrt(h))
MW = np.abs(pow2 - pow1)
return km + weight*MW
Should I be doing this with kmeans (or some other method)?
不幸的是,SciPy 的 kmeans2
和 scikit-learn 的 KMeans
的当前实现仅支持欧氏距离。另一种方法是执行 hierarchical clustering通过 SciPy 的聚类包根据刚刚定义的指标对中心进行分组。
让我们首先生成模拟数据,即具有随机值的 8 个中心的特征向量:
N = 8
np.random.seed(0)
lat = np.random.uniform(low=-90, high=90, size=N)
lng = np.random.uniform(low=-180, high=180, size=N)
power = np.random.randint(low=5, high=50, size=N)
data = np.vstack([lat, lng, power]).T
上面代码片段生成的变量 data
的内容如下所示:
array([[ 8.7864, 166.9186, 21. ],
[ 38.7341, -41.9611, 10. ],
[ 18.4974, 105.021 , 20. ],
[ 8.079 , 10.4022, 5. ],
[ -13.7421, 24.496 , 23. ],
[ 26.2609, 153.2148, 40. ],
[ -11.2343, -154.427 , 29. ],
[ 70.5191, -148.6335, 34. ]])
要将这些数据分成三个不同的组,我们必须将 data
和 custom_metric
传递给 linkage
函数(检查 docs 以详细了解参数 method
),然后将返回的链接矩阵传递给 n_clusters=3
的 cut_tree
函数。
from scipy.cluster.hierarchy import linkage, cut_tree
Z = linkage(data, method='average', metric=custom_metric)
y = cut_tree(Z, 3).flatten()
因此,我们得到了每个中心的组成员(数组 y
):
array([0, 1, 0, 2, 2, 0, 0, 1])
以上结果取决于weight
的值。如果您希望使用不同于 1
的值(例如 250
),您可以像这样更改默认值:
def custom_metric(central_1, central_2, weight=250):
或者,您可以将 linkage
调用中的参数 metric
设置为 lambda
表达式,如下所示:metric=lambda x, y: custom_metric(x, y, 250)
.
最后,为了更深入地了解层次/凝聚聚类,您可以将其绘制为树状图:
from scipy.cluster.hierarchy import dendrogram
dendrogram(Z)
关于python - 如何在 python 中执行具有权重/密度的集群?有权重的 kmeans 之类的东西?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/45025056/
;) 如果您想将 2mb 数据编码到 2d 条码中,哪种 2 条码适合作为起点或推荐。 今天有很多不同类型的二维条码,Aztec 二维条码、maxicodes、Pdf417、Microsoft HCC
我想创建一个具有密度的 3d 图。 我使用函数 density 首先为特定的 x 值创建一个二维图,然后该函数创建密度并将它们放入 y 变量中。现在我有第二组 x 值并将其再次放入密度函数中,然后我得
我对 geom_density 的以下变体的含义感到困惑在ggplot中: 有人可以解释这四个电话之间的区别: geom_density(aes_string(x=myvar)) geom_densi
已结束。此问题正在寻求书籍、工具、软件库等的推荐。它不满足Stack Overflow guidelines 。目前不接受答案。 我们不允许提出寻求书籍、工具、软件库等推荐的问题。您可以编辑问题,以便
重要编辑:最初的问题是关于获取 double 和分数的密度。当我得到 double 而不是分数的答案时,我正在改变主题以结束这个问题。原问题的另一半是here 新问题 我想找出 2 个给定数字之间的
如何计算 AVD 的抽象 LCD 密度? 最佳答案 抽象 LCD 密度以每英寸点数为单位(参见 docs)。 wikipedia article on Pixel density有一个有用的部分解释了
我使用(在 Windows 下)以下命令 magick convert -units pixelsperinch file_in -density 600 file_out 设置 JPG 图像的 dp
手机分辨率基础知识(dpi,dip计算) 1.术语和概念 术语 说明 备注 screen size(屏幕尺寸)
我尝试创建具有两个以上组的 Highcharts 密度。我找到了一种手动添加它们的方法,但必须有更好的方法来处理组。 示例:我想创建一个类似于下面的 ggplot 图表的 highchart,而不是将
我们有以下代码 convert foo.pdf foo.tiff 这多年来一直运行良好,并且由此产生的 tiff 是一个合理的打印质量。 我们刚刚升级了 imagemagick,现在 tiff 的分辨
ggplot2 中的 stats_ 函数创建特殊变量,例如stat_bin2d 创建一个名为 ..count.. 的特殊变量。在哪里可以找到列出哪个 stat_ 函数返回哪些特殊变量的文档? 我查看了
考虑以下几行。 p <- ggplot(mpg, aes(x=factor(cyl), y=..count..)) p + geom_histogram() p + stat_summary(fu
我想模拟 Samsung Galaxy Mini。我将分辨率设置为 240x320,将 LCD 密度设置为 180。这是否正确? 最佳答案 是的,绝对正确.... 关于android - Galaxy
我们需要获取Android手机或Pad的屏幕的物理尺寸,以便于界面的设计或是其他功能的实现。下面就分享一下Android中常用的一些辅助方法: 获取屏幕高度:
我创建了一个直方图/密度图函数,我希望 y 轴是计数而不是密度,但在参数化其 binwidth 时遇到问题。 我正在使用基于 http://docs.ggplot2.org/current/geom_
我试过四处搜索,但没有任何运气。我开发了一些使用大量图像的应用程序(大小大多为 200*200 像素)。我想通过添加不同尺寸的图像来支持不同的屏幕尺寸,但由于这会增加 apk 的许多兆字节,我需要知道
我正在尝试生成一个较小的图形来可视化 Pandas 时间序列。然而,自动生成的 x-ticks 不适应新的大小并导致重叠的刻度。我想知道如何调整 x-ticks 的频率?例如。对于这个例子: figs
我正在使用 geom_density 制作一系列密度图从数据框中,并使用 facet_wrap 按条件显示它,如: ggplot(iris) + geom_density(aes(x=Sepal.Wi
我已经从 From this example 了解了 APK 拆分概念 我已经尝试在我的项目中实现它,但只有 Drawable 文件夹受到影响。我也想拆分 Mipmap 文件夹。 下面是我的 buil
我需要在 javascript 中更改 JPG/PNG 类型图像的分辨率/密度。我需要这样做的原因是我可以将图像发送到第三方 API,然后第三方 API 将根据分辨率/密度元数据知道要打印的每英寸像素
我是一名优秀的程序员,十分优秀!