gpt4 book ai didi

python - 如何将 Pandas Dataframe 转换为所需的 Json 格式

转载 作者:太空狗 更新时间:2023-10-29 20:20:14 26 4
gpt4 key购买 nike

start = datetime.datetime(2013, 1, 1)
end = datetime.datetime(2013, 01, 27)
f=web.get_data_yahoo('AAPL',start, end)
f['Adj Close'].to_json(date_format='iso',orient='split')

上面的代码给出了以下结果:

Out[85]: '{"name":"Adj Close","index":["2013-01-02T00:00:00","2013-01-03T00:00:0
0","2013-01-04T00:00:00","2013-01-07T00:00:00","2013-01-08T00:00:00","2013-01-09
T00:00:00","2013-01-10T00:00:00","2013-01-11T00:00:00","2013-01-14T00:00:00","20
13-01-15T00:00:00","2013-01-16T00:00:00","2013-01-17T00:00:00","2013-01-18T00:00
:00","2013-01-22T00:00:00","2013-01-23T00:00:00","2013-01-24T00:00:00","2013-01-
25T00:00:00"],"data":[535.58,528.82,514.09,511.06,512.44,504.43,510.68,507.55,48
9.45,474.01,493.69,490.36,487.75,492.4,501.41,439.46,429.1]}'

我想要的是:

'[{"index":"2013-01-02T00:00:00",value:535.58},{"index":"2013-01-04T00:00:00",value:528.82},...]'

这可能吗?我应该如何解决这个问题?

最佳答案

看起来这可能是 to_json 的一个有用的替代方法,目前,一个解决方法是将它读回 python 和 munge :s

In [11]: s = f['Adj Close'].to_json(date_format='iso',orient='split')

In [12]: d = json.loads(s) # import json

In [13]: [{"index": date, "value": val} for date, val in zip(d['index'], d['data'])]
Out[13]:
[{'index': u'2013-01-02T00:00:00.000Z', 'value': 535.58},
{'index': u'2013-01-03T00:00:00.000Z', 'value': 528.82},
{'index': u'2013-01-04T00:00:00.000Z', 'value': 514.09},
{'index': u'2013-01-07T00:00:00.000Z', 'value': 511.06},
{'index': u'2013-01-08T00:00:00.000Z', 'value': 512.44},
{'index': u'2013-01-09T00:00:00.000Z', 'value': 504.43},
{'index': u'2013-01-10T00:00:00.000Z', 'value': 510.68},
{'index': u'2013-01-11T00:00:00.000Z', 'value': 507.55},
{'index': u'2013-01-14T00:00:00.000Z', 'value': 489.45},
{'index': u'2013-01-15T00:00:00.000Z', 'value': 474.01},
{'index': u'2013-01-16T00:00:00.000Z', 'value': 493.69},
{'index': u'2013-01-17T00:00:00.000Z', 'value': 490.36},
{'index': u'2013-01-18T00:00:00.000Z', 'value': 487.75},
{'index': u'2013-01-22T00:00:00.000Z', 'value': 492.4},
{'index': u'2013-01-23T00:00:00.000Z', 'value': 501.41},
{'index': u'2013-01-24T00:00:00.000Z', 'value': 439.46},
{'index': u'2013-01-25T00:00:00.000Z', 'value': 429.1}]

In [14]: json.dumps([{"index": date, "value": val} for date, val in zip(d['index'], d['data'])])
Out[14]: '[{"index": "2013-01-02T00:00:00.000Z", "value": 535.58}, {"index": "2013-01-03T00:00:00.000Z", "value": 528.82}, {"index": "2013-01-04T00:00:00.000Z", "value": 514.09}, {"index": "2013-01-07T00:00:00.000Z", "value": 511.06}, {"index": "2013-01-08T00:00:00.000Z", "value": 512.44}, {"index": "2013-01-09T00:00:00.000Z", "value": 504.43}, {"index": "2013-01-10T00:00:00.000Z", "value": 510.68}, {"index": "2013-01-11T00:00:00.000Z", "value": 507.55}, {"index": "2013-01-14T00:00:00.000Z", "value": 489.45}, {"index": "2013-01-15T00:00:00.000Z", "value": 474.01}, {"index": "2013-01-16T00:00:00.000Z", "value": 493.69}, {"index": "2013-01-17T00:00:00.000Z", "value": 490.36}, {"index": "2013-01-18T00:00:00.000Z", "value": 487.75}, {"index": "2013-01-22T00:00:00.000Z", "value": 492.4}, {"index": "2013-01-23T00:00:00.000Z", "value": 501.41}, {"index": "2013-01-24T00:00:00.000Z", "value": 439.46}, {"index": "2013-01-25T00:00:00.000Z", "value": 429.1}]'

显然这违背了高效 to_json 函数的目的,但我认为值得将其添加为 a feature request - 我认为这是一种相当标准的格式,我们只是忽略了它。

关于python - 如何将 Pandas Dataframe 转换为所需的 Json 格式,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/20639631/

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com