gpt4 book ai didi

python - 提高 Pandas 合并性能

转载 作者:太空狗 更新时间:2023-10-29 20:19:46 24 4
gpt4 key购买 nike

我特别没有 Pands Merge 的性能问题,正如其他帖子所建议的那样,但我有一个类,其中有很多方法,它对数据集进行了大量合并。

该类有大约 10 个 group by 和大约 15 个 merge。虽然 groupby 非常快,但在 1.5 秒的类总执行时间中,这 15 次合并调用大约需要 0.7 秒。

我想加快这些合并调用的性能。由于我将进行大约 4000 次迭代,因此在单次迭代中整体节省 0.5 秒将导致整体性能降低约 30 分钟,这会很棒。

有什么我应该尝试的建议吗?我试过了:CythonNumba,而 Numba 更慢。

谢谢

编辑 1:添加示例代码片段:我的合并语句:

tmpDf = pd.merge(self.data, t1, on='APPT_NBR', how='left')
tmp = tmpDf

tmpDf = pd.merge(tmp, t2, on='APPT_NBR', how='left')
tmp = tmpDf

tmpDf = pd.merge(tmp, t3, on='APPT_NBR', how='left')
tmp = tmpDf

tmpDf = pd.merge(tmp, t4, on='APPT_NBR', how='left')
tmp = tmpDf

tmpDf = pd.merge(tmp, t5, on='APPT_NBR', how='left')

并且,通过实现联接,我合并了以下声明:

dat = self.data.set_index('APPT_NBR')

t1.set_index('APPT_NBR', inplace=True)
t2.set_index('APPT_NBR', inplace=True)
t3.set_index('APPT_NBR', inplace=True)
t4.set_index('APPT_NBR', inplace=True)
t5.set_index('APPT_NBR', inplace=True)

tmpDf = dat.join(t1, how='left')
tmpDf = tmpDf.join(t2, how='left')
tmpDf = tmpDf.join(t3, how='left')
tmpDf = tmpDf.join(t4, how='left')
tmpDf = tmpDf.join(t5, how='left')

tmpDf.reset_index(inplace=True)

请注意,所有这些都是函数的一部分,该函数名为:def merge_earlier_created_values(self):

并且,当我通过以下方式从 profilehooks 进行定时调用时:

@timedcall(immediate=True)
def merge_earlier_created_values(self):

我得到以下结果:

该方法的分析结果给出:

@profile(immediate=True)
def merge_earlier_created_values(self):

使用Merge的函数分析如下:

*** PROFILER RESULTS ***
merge_earlier_created_values (E:\Projects\Predictive Inbound Cartoon Estimation-MLO\Python\CodeToSubmit\helpers\get_prev_data_by_date.py:122)
function called 1 times

71665 function calls (70588 primitive calls) in 0.524 seconds

Ordered by: cumulative time, internal time, call count
List reduced from 563 to 40 due to restriction <40>

ncalls tottime percall cumtime percall filename:lineno(function)
1 0.012 0.012 0.524 0.524 get_prev_data_by_date.py:122(merge_earlier_created_values)
14 0.000 0.000 0.285 0.020 generic.py:1901(_update_inplace)
14 0.000 0.000 0.285 0.020 generic.py:1402(_maybe_update_cacher)
19 0.000 0.000 0.284 0.015 generic.py:1492(_check_setitem_copy)
7 0.283 0.040 0.283 0.040 {built-in method gc.collect}
15 0.000 0.000 0.181 0.012 generic.py:1842(drop)
10 0.000 0.000 0.153 0.015 merge.py:26(merge)
10 0.000 0.000 0.140 0.014 merge.py:201(get_result)
8/4 0.000 0.000 0.126 0.031 decorators.py:65(wrapper)
4 0.000 0.000 0.126 0.031 frame.py:3028(drop_duplicates)
1 0.000 0.000 0.102 0.102 get_prev_data_by_date.py:264(recreate_previous_cartons)
1 0.000 0.000 0.101 0.101 get_prev_data_by_date.py:231(recreate_previous_appt_scheduled_date)
1 0.000 0.000 0.098 0.098 get_prev_data_by_date.py:360(recreate_previous_freight_type)
10 0.000 0.000 0.092 0.009 internals.py:4455(concatenate_block_managers)
10 0.001 0.000 0.088 0.009 internals.py:4471(<listcomp>)
120 0.001 0.000 0.084 0.001 internals.py:4559(concatenate_join_units)
266 0.004 0.000 0.067 0.000 common.py:733(take_nd)
120 0.000 0.000 0.061 0.001 internals.py:4569(<listcomp>)
120 0.003 0.000 0.061 0.001 internals.py:4814(get_reindexed_values)
1 0.000 0.000 0.059 0.059 get_prev_data_by_date.py:295(recreate_previous_appt_status)
10 0.000 0.000 0.038 0.004 merge.py:322(_get_join_info)
10 0.001 0.000 0.036 0.004 merge.py:516(_get_join_indexers)
25 0.001 0.000 0.024 0.001 merge.py:687(_factorize_keys)
74 0.023 0.000 0.023 0.000 {pandas.algos.take_2d_axis1_object_object}
50 0.022 0.000 0.022 0.000 {method 'factorize' of 'pandas.hashtable.Int64Factorizer' objects}
120 0.003 0.000 0.022 0.000 internals.py:4479(get_empty_dtype_and_na)
88 0.000 0.000 0.021 0.000 frame.py:1969(__getitem__)
1 0.000 0.000 0.019 0.019 get_prev_data_by_date.py:328(recreate_previous_location_numbers)
39 0.000 0.000 0.018 0.000 internals.py:3495(reindex_indexer)
537 0.017 0.000 0.017 0.000 {built-in method numpy.core.multiarray.empty}
15 0.000 0.000 0.017 0.001 ops.py:725(wrapper)
15 0.000 0.000 0.015 0.001 frame.py:2011(_getitem_array)
24 0.000 0.000 0.014 0.001 internals.py:3625(take)
10 0.000 0.000 0.014 0.001 merge.py:157(__init__)
10 0.000 0.000 0.014 0.001 merge.py:382(_get_merge_keys)
15 0.008 0.001 0.013 0.001 ops.py:662(na_op)
234 0.000 0.000 0.013 0.000 common.py:158(isnull)
234 0.001 0.000 0.013 0.000 common.py:179(_isnull_new)
15 0.000 0.000 0.012 0.001 generic.py:1609(take)
20 0.000 0.000 0.012 0.001 generic.py:2191(reindex)

使用Join的profiling如下:

65079 function calls (63990 primitive calls) in 0.550 seconds

Ordered by: cumulative time, internal time, call count
List reduced from 592 to 40 due to restriction <40>

ncalls tottime percall cumtime percall filename:lineno(function)
1 0.016 0.016 0.550 0.550 get_prev_data_by_date.py:122(merge_earlier_created_values)
14 0.000 0.000 0.295 0.021 generic.py:1901(_update_inplace)
14 0.000 0.000 0.295 0.021 generic.py:1402(_maybe_update_cacher)
19 0.000 0.000 0.294 0.015 generic.py:1492(_check_setitem_copy)
7 0.293 0.042 0.293 0.042 {built-in method gc.collect}
10 0.000 0.000 0.173 0.017 generic.py:1842(drop)
10 0.000 0.000 0.139 0.014 merge.py:26(merge)
8/4 0.000 0.000 0.138 0.034 decorators.py:65(wrapper)
4 0.000 0.000 0.138 0.034 frame.py:3028(drop_duplicates)
10 0.000 0.000 0.132 0.013 merge.py:201(get_result)
5 0.000 0.000 0.122 0.024 frame.py:4324(join)
5 0.000 0.000 0.122 0.024 frame.py:4371(_join_compat)
1 0.000 0.000 0.111 0.111 get_prev_data_by_date.py:264(recreate_previous_cartons)
1 0.000 0.000 0.103 0.103 get_prev_data_by_date.py:231(recreate_previous_appt_scheduled_date)
1 0.000 0.000 0.099 0.099 get_prev_data_by_date.py:360(recreate_previous_freight_type)
10 0.000 0.000 0.093 0.009 internals.py:4455(concatenate_block_managers)
10 0.001 0.000 0.089 0.009 internals.py:4471(<listcomp>)
100 0.001 0.000 0.085 0.001 internals.py:4559(concatenate_join_units)
205 0.003 0.000 0.068 0.000 common.py:733(take_nd)
100 0.000 0.000 0.060 0.001 internals.py:4569(<listcomp>)
100 0.001 0.000 0.060 0.001 internals.py:4814(get_reindexed_values)
1 0.000 0.000 0.056 0.056 get_prev_data_by_date.py:295(recreate_previous_appt_status)
10 0.000 0.000 0.033 0.003 merge.py:322(_get_join_info)
52 0.031 0.001 0.031 0.001 {pandas.algos.take_2d_axis1_object_object}
5 0.000 0.000 0.030 0.006 base.py:2329(join)
37 0.001 0.000 0.027 0.001 internals.py:2754(apply)
6 0.000 0.000 0.024 0.004 frame.py:2763(set_index)
7 0.000 0.000 0.023 0.003 merge.py:516(_get_join_indexers)
2 0.000 0.000 0.022 0.011 base.py:2483(_join_non_unique)
7 0.000 0.000 0.021 0.003 generic.py:2950(copy)
7 0.000 0.000 0.021 0.003 internals.py:3046(copy)
84 0.000 0.000 0.020 0.000 frame.py:1969(__getitem__)
19 0.001 0.000 0.019 0.001 merge.py:687(_factorize_keys)
100 0.002 0.000 0.019 0.000 internals.py:4479(get_empty_dtype_and_na)
1 0.000 0.000 0.018 0.018 get_prev_data_by_date.py:328(recreate_previous_location_numbers)
15 0.000 0.000 0.017 0.001 ops.py:725(wrapper)
34 0.001 0.000 0.017 0.000 internals.py:3495(reindex_indexer)
83 0.004 0.000 0.016 0.000 internals.py:3211(_consolidate_inplace)
68 0.015 0.000 0.015 0.000 {method 'copy' of 'numpy.ndarray' objects}
15 0.000 0.000 0.015 0.001 frame.py:2011(_getitem_array)

如您所见,合并比连接更快,虽然它是一个小值,但超过 4000 次迭代,这个小值在几分钟内变成了一个巨大的数字。

谢谢

最佳答案

合并列上的 set_index 确实加快了速度。下面是 julien-marrec's Answer 稍微更现实一点的版本.

import pandas as pd
import numpy as np
myids=np.random.choice(np.arange(10000000), size=1000000, replace=False)
df1 = pd.DataFrame(myids, columns=['A'])
df1['B'] = np.random.randint(0,1000,(1000000))
df2 = pd.DataFrame(np.random.permutation(myids), columns=['A2'])
df2['B2'] = np.random.randint(0,1000,(1000000))

%%timeit
x = df1.merge(df2, how='left', left_on='A', right_on='A2')
#1 loop, best of 3: 664 ms per loop

%%timeit
x = df1.set_index('A').join(df2.set_index('A2'), how='left')
#1 loop, best of 3: 354 ms per loop

%%time
df1.set_index('A', inplace=True)
df2.set_index('A2', inplace=True)
#Wall time: 16 ms

%%timeit
x = df1.join(df2, how='left')
#10 loops, best of 3: 80.4 ms per loop

当要连接的列的整数在两个表中的顺序不同时,您仍然可以期望速度提高 8 倍。

关于python - 提高 Pandas 合并性能,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/40860457/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com